957 resultados para Ensemble nodal
Resumo:
PURPOSE: According to estimations around 230 people die as a result of radon exposure in Switzerland. This public health concern makes reliable indoor radon prediction and mapping methods necessary in order to improve risk communication to the public. The aim of this study was to develop an automated method to classify lithological units according to their radon characteristics and to develop mapping and predictive tools in order to improve local radon prediction. METHOD: About 240 000 indoor radon concentration (IRC) measurements in about 150 000 buildings were available for our analysis. The automated classification of lithological units was based on k-medoids clustering via pair-wise Kolmogorov distances between IRC distributions of lithological units. For IRC mapping and prediction we used random forests and Bayesian additive regression trees (BART). RESULTS: The automated classification groups lithological units well in terms of their IRC characteristics. Especially the IRC differences in metamorphic rocks like gneiss are well revealed by this method. The maps produced by random forests soundly represent the regional difference of IRCs in Switzerland and improve the spatial detail compared to existing approaches. We could explain 33% of the variations in IRC data with random forests. Additionally, the influence of a variable evaluated by random forests shows that building characteristics are less important predictors for IRCs than spatial/geological influences. BART could explain 29% of IRC variability and produced maps that indicate the prediction uncertainty. CONCLUSION: Ensemble regression trees are a powerful tool to model and understand the multidimensional influences on IRCs. Automatic clustering of lithological units complements this method by facilitating the interpretation of radon properties of rock types. This study provides an important element for radon risk communication. Future approaches should consider taking into account further variables like soil gas radon measurements as well as more detailed geological information.
Resumo:
We tested and compared performances of Roach formula, Partin tables and of three Machine Learning (ML) based algorithms based on decision trees in identifying N+ prostate cancer (PC). 1,555 cN0 and 50 cN+ PC were analyzed. Results were also verified on an independent population of 204 operated cN0 patients, with a known pN status (187 pN0, 17 pN1 patients). ML performed better, also when tested on the surgical population, with accuracy, specificity, and sensitivity ranging between 48-86%, 35-91%, and 17-79%, respectively. ML potentially allows better prediction of the nodal status of PC, potentially allowing a better tailoring of pelvic irradiation.
Resumo:
The Extended Kalman Filter (EKF) and four dimensional assimilation variational method (4D-VAR) are both advanced data assimilation methods. The EKF is impractical in large scale problems and 4D-VAR needs much effort in building the adjoint model. In this work we have formulated a data assimilation method that will tackle the above difficulties. The method will be later called the Variational Ensemble Kalman Filter (VEnKF). The method has been tested with the Lorenz95 model. Data has been simulated from the solution of the Lorenz95 equation with normally distributed noise. Two experiments have been conducted, first with full observations and the other one with partial observations. In each experiment we assimilate data with three-hour and six-hour time windows. Different ensemble sizes have been tested to examine the method. There is no strong difference between the results shown by the two time windows in either experiment. Experiment I gave similar results for all ensemble sizes tested while in experiment II, higher ensembles produce better results. In experiment I, a small ensemble size was enough to produce nice results while in experiment II the size had to be larger. Computational speed is not as good as we would want. The use of the Limited memory BFGS method instead of the current BFGS method might improve this. The method has proven succesful. Even if, it is unable to match the quality of analyses of EKF, it attains significant skill in forecasts ensuing from the analysis it has produced. It has two advantages over EKF; VEnKF does not require an adjoint model and it can be easily parallelized.
Resumo:
The focus of this dissertation is to develop finite elements based on the absolute nodal coordinate formulation. The absolute nodal coordinate formulation is a nonlinear finite element formulation, which is introduced for special requirements in the field of flexible multibody dynamics. In this formulation, a special definition for the rotation of elements is employed to ensure the formulation will not suffer from singularities due to large rotations. The absolute nodal coordinate formulation can be used for analyzing the dynamics of beam, plate and shell type structures. The improvements of the formulation are mainly concentrated towards the description of transverse shear deformation. Additionally, the formulation is verified by using conventional iso-parametric solid finite element and geometrically exact beam theory. Previous claims about especially high eigenfrequencies are studied by introducing beam elements based on the absolute nodal coordinate formulation in the framework of the large rotation vector approach. Additionally, the same high eigenfrequency problem is studied by using constraints for transverse deformation. It was determined that the improvements for shear deformation in the transverse direction lead to clear improvements in computational efficiency. This was especially true when comparative stress must be defined, for example when using elasto-plastic material. Furthermore, the developed plate element can be used to avoid certain numerical problems, such as shear and curvature lockings. In addition, it was shown that when compared to conventional solid elements, or elements based on nonlinear beam theory, elements based on the absolute nodal coordinate formulation do not lead to an especially stiff system for the equations of motion.
Resumo:
Soitinnus: trumpetti, orkesteri.
Resumo:
Time series of hourly electricity spot prices have peculiar properties. Electricity is by its nature difficult to store and has to be available on demand. There are many reasons for wanting to understand correlations in price movements, e.g. risk management purposes. The entire analysis carried out in this thesis has been applied to the New Zealand nodal electricity prices: offer prices (from 29 May 2002 to 31 March 2009) and final prices (from 1 January 1999 to 31 March 2009). In this paper, such natural factors as location of the node and generation type in the node that effects the correlation between nodal prices have been reviewed. It was noticed that the geographical factor affects the correlation between nodes more than others. Therefore, the visualisation of correlated nodes was done. However, for the offer prices the clear separation of correlated and not correlated nodes was not obtained. Finally, it was concluded that location factor most strongly affects correlation of electricity nodal prices; problems in visualisation probably associated with power losses when the power is transmitted over long distance.
Resumo:
The current thesis manuscript studies the suitability of a recent data assimilation method, the Variational Ensemble Kalman Filter (VEnKF), to real-life fluid dynamic problems in hydrology. VEnKF combines a variational formulation of the data assimilation problem based on minimizing an energy functional with an Ensemble Kalman filter approximation to the Hessian matrix that also serves as an approximation to the inverse of the error covariance matrix. One of the significant features of VEnKF is the very frequent re-sampling of the ensemble: resampling is done at every observation step. This unusual feature is further exacerbated by observation interpolation that is seen beneficial for numerical stability. In this case the ensemble is resampled every time step of the numerical model. VEnKF is implemented in several configurations to data from a real laboratory-scale dam break problem modelled with the shallow water equations. It is also tried in a two-layer Quasi- Geostrophic atmospheric flow problem. In both cases VEnKF proves to be an efficient and accurate data assimilation method that renders the analysis more realistic than the numerical model alone. It also proves to be robust against filter instability by its adaptive nature.
Resumo:
Référence bibliographique : Rol, 58538
Resumo:
Référence bibliographique : Rol, 58539