962 resultados para Emerging pattern mining
Resumo:
Artisanal and small-scale mining (ASM) is an activity intimately associated with social deprivation and environmental degradation, including deforestation. This paper examines ASM and deforestation using a broadly poststructural political ecology framework. Hegemonic discourses are shown to consistently influence policy direction, particularly in emerging approaches such as Corporate Social Responsibility and the Forest Stewardship Council. A review of alternative discourses reveals that the poststructural method is useful for critiquing the international policy arena but does not inform new approaches. Synthesis of the analysis leads to conclusions that echo a growing body of literature advocating for policies to become increasingly sensitive to local contexts, synergistic between actors at difference scales, and to be integrated across sectors.
Resumo:
O objetivo deste trabalho é testar a aplicação de um modelo gráfico probabilístico, denominado genericamente de Redes Bayesianas, para desenvolver modelos computacionais que possam ser utilizados para auxiliar a compreensão de problemas e/ou na previsão de variáveis de natureza econômica. Com este propósito, escolheu-se um problema amplamente abordado na literatura e comparou-se os resultados teóricos e experimentais já consolidados com os obtidos utilizando a técnica proposta. Para tanto,foi construído um modelo para a classificação da tendência do "risco país" para o Brasil a partir de uma base de dados composta por variáveis macroeconômicas e financeiras. Como medida do risco adotou-se o EMBI+ (Emerging Markets Bond Index Plus), por ser um indicador amplamente utilizado pelo mercado.
Resumo:
This work extendes Diebold, Li and Yueís (2006) about global yield curve and proposes to extend the study by including emerging countries. The perception of emerging market su§ers ináuence of external factors or global factors, is the main argument of this work. We expect to obtain stylized facts.that obey similar pattern found by those authors. The results indicate the existence of global level and global slope factors. These factors represent an important fraction in the bond yield determination and show a decreasing trend of the global level factor low ináuence of global slope factor in these countries when they are compared with developed countries. Keywords: Kalman Filter, Emerging Markets, Yield Curve, and Bond.
Resumo:
Groundwaters and surface waters from an area of treatment of sand for industrial purposes at Analandia municipality, nearly in the center of Sao Paulo State, Brazil, were chemically and isotopically analyzed with two aims: to evaluate if the anthropogenic activities that has taken place for the last 6 years is affecting the quality of the hydrological resources and to relate the hydrogeochemical behaviour of the uranium isotopes 234U and 238U with the pattern of circulation of groundwaters.
Resumo:
The increase in the number of spatial data collected has motivated the development of geovisualisation techniques, aiming to provide an important resource to support the extraction of knowledge and decision making. One of these techniques are 3D graphs, which provides a dynamic and flexible increase of the results analysis obtained by the spatial data mining algorithms, principally when there are incidences of georeferenced objects in a same local. This work presented as an original contribution the potentialisation of visual resources in a computational environment of spatial data mining and, afterwards, the efficiency of these techniques is demonstrated with the use of a real database. The application has shown to be very interesting in interpreting obtained results, such as patterns that occurred in a same locality and to provide support for activities which could be done as from the visualisation of results. © 2013 Springer-Verlag.
Resumo:
Multi-element analysis of honey samples was carried out with the aim of developing a reliable method of tracing the origin of honey. Forty-two chemical elements were determined (Al, Cu, Pb, Zn, Mn, Cd, Tl, Co, Ni, Rb, Ba, Be, Bi, U, V, Fe, Pt, Pd, Te, Hf, Mo, Sn, Sb, P, La, Mg, I, Sm, Tb, Dy, Sd, Th, Pr, Nd, Tm, Yb, Lu, Gd, Ho, Er, Ce, Cr) by inductively coupled plasma mass spectrometry (ICP-MS). Then, three machine learning tools for classification and two for attribute selection were applied in order to prove that it is possible to use data mining tools to find the region where honey originated. Our results clearly demonstrate the potential of Support Vector Machine (SVM), Multilayer Perceptron (MLP) and Random Forest (RF) chemometric tools for honey origin identification. Moreover, the selection tools allowed a reduction from 42 trace element concentrations to only 5. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The Dipteran a native Brazilian insect that has become a valuable model system for developmental biology research because it provides an interesting opportunity to study a different type of insect oogenesis. Sequences from a cDNA library that was constructed with poly A + RNA from the ovaries of larvae at different ages were analyzed. Molecular characterization confirmed interesting findings, such as the presence of . The gene encodes a conserved RNA-binding protein that is required during early development for the maintenance and division of the primordial germ cells of Diptera. plays an important role in specifying the posterior regions of insect embryos and is important for abdomen formation. In the present work, we showed the spatial and temporal expression profiles of this important gene, which is involved in oogenesis and early development. Data mining techniques were used to obtain the complete sequence of . Bioinformatic tools were used to determine the following: (1) the secondary structure of the 3'-untranslated region of the mRNA, (2) the encoded protein of the isolated gene, (3) the conserved zinc-finger domains of the Nanos protein, and (4) phylogenetic analyses. Furthermore, RNA in situ hybridization and immunolocalization were used to determine mRNA and protein expression in the tissues that were studied and to define as a germ cell molecular marker.
Resumo:
Il presente lavoro nasce dall’obiettivo di individuare strumenti statistici per indagare, sotto diversi aspetti, il flusso di lavoro di un Laboratorio di Anatomia Patologica. Il punto di partenza dello studio è l’ambiente di lavoro di ATHENA, software gestionale utilizzato nell’Anatomia Patologica, sviluppato dalla NoemaLife S.p.A., azienda specializzata nell’informatica per la sanità. A partire da tale applicativo è stato innanzitutto formalizzato il workflow del laboratorio (Capitolo 2), nelle sue caratteristiche e nelle sue possibili varianti, identificando le operazioni principali attraverso una serie di “fasi”. Proprio le fasi, unitamente alle informazioni addizionali ad esse associate, saranno per tutta la trattazione e sotto diversi punti di vista al centro dello studio. L’analisi che presentiamo è stata per completezza sviluppata in due scenari che tengono conto di diversi aspetti delle informazioni in possesso. Il primo scenario tiene conto delle sequenze di fasi, che si presentano nel loro ordine cronologico, comprensive di eventuali ripetizioni o cicli di fasi precedenti alla conclusione. Attraverso l’elaborazione dei dati secondo specifici formati è stata svolta un’iniziale indagine grafica di Workflow Mining (Capitolo 3) grazie all’ausilio di EMiT, un software che attraverso un set di log di processo restituisce graficamente il flusso di lavoro che li rappresenta. Questa indagine consente già di valutare la completezza dell’utilizzo di un applicativo rispetto alle sue potenzialità. Successivamente, le stesse fasi sono state elaborate attraverso uno specifico adattamento di un comune algoritmo di allineamento globale, l’algoritmo Needleman-Wunsch (Capitolo 4). L’utilizzo delle tecniche di allineamento applicate a sequenze di processo è in grado di individuare, nell’ambito di una specifica codifica delle fasi, le similarità tra casi clinici. L’algoritmo di Needleman-Wunsch individua le identità e le discordanze tra due stringhe di caratteri, assegnando relativi punteggi che portano a valutarne la similarità. Tale algoritmo è stato opportunamente modificato affinché possa riconoscere e penalizzare differentemente cicli e ripetizioni, piuttosto che fasi mancanti. Sempre in ottica di allineamento sarà utilizzato l’algoritmo euristico Clustal, che a partire da un confronto pairwise tra sequenze costruisce un dendrogramma rappresentante graficamente l’aggregazione dei casi in funzione della loro similarità. Proprio il dendrogramma, per la sua struttura grafica ad albero, è in grado di mostrare intuitivamente l’andamento evolutivo della similarità di un pattern di casi. Il secondo scenario (Capitolo 5) aggiunge alle sequenze l’informazione temporale in termini di istante di esecuzione di ogni fase. Da un dominio basato su sequenze di fasi, si passa dunque ad uno scenario di serie temporali. I tempi rappresentano infatti un dato essenziale per valutare la performance di un laboratorio e per individuare la conformità agli standard richiesti. Il confronto tra i casi è stato effettuato con diverse modalità, in modo da stabilire la distanza tra tutte le coppie sotto diversi aspetti: le sequenze, rappresentate in uno specifico sistema di riferimento, sono state confrontate in base alla Distanza Euclidea ed alla Dynamic Time Warping, in grado di esprimerne le discordanze rispettivamente temporali, di forma e, dunque, di processo. Alla luce dei risultati e del loro confronto, saranno presentate già in questa fase le prime valutazioni sulla pertinenza delle distanze e sulle informazioni deducibili da esse. Il Capitolo 6 rappresenta la ricerca delle correlazioni tra elementi caratteristici del processo e la performance dello stesso. Svariati fattori come le procedure utilizzate, gli utenti coinvolti ed ulteriori specificità determinano direttamente o indirettamente la qualità del servizio erogato. Le distanze precedentemente calcolate vengono dunque sottoposte a clustering, una tecnica che a partire da un insieme eterogeneo di elementi individua famiglie o gruppi simili. L’algoritmo utilizzato sarà l’UPGMA, comunemente applicato nel clustering in quanto, utilizzando, una logica di medie pesate, porta a clusterizzazioni pertinenti anche in ambiti diversi, dal campo biologico a quello industriale. L’ottenimento dei cluster potrà dunque essere finalmente sottoposto ad un’attività di ricerca di correlazioni utili, che saranno individuate ed interpretate relativamente all’attività gestionale del laboratorio. La presente trattazione propone quindi modelli sperimentali adattati al caso in esame ma idealmente estendibili, interamente o in parte, a tutti i processi che presentano caratteristiche analoghe.
Resumo:
Il problema relativo alla predizione, la ricerca di pattern predittivi all‘interno dei dati, è stato studiato ampiamente. Molte metodologie robuste ed efficienti sono state sviluppate, procedimenti che si basano sull‘analisi di informazioni numeriche strutturate. Quella testuale, d‘altro canto, è una tipologia di informazione fortemente destrutturata. Quindi, una immediata conclusione, porterebbe a pensare che per l‘analisi predittiva su dati testuali sia necessario sviluppare metodi completamente diversi da quelli ben noti dalle tecniche di data mining. Un problema di predizione può essere risolto utilizzando invece gli stessi metodi : dati testuali e documenti possono essere trasformati in valori numerici, considerando per esempio l‘assenza o la presenza di termini, rendendo di fatto possibile una utilizzazione efficiente delle tecniche già sviluppate. Il text mining abilita la congiunzione di concetti da campi di applicazione estremamente eterogenei. Con l‘immensa quantità di dati testuali presenti, basti pensare, sul World Wide Web, ed in continua crescita a causa dell‘utilizzo pervasivo di smartphones e computers, i campi di applicazione delle analisi di tipo testuale divengono innumerevoli. L‘avvento e la diffusione dei social networks e della pratica di micro blogging abilita le persone alla condivisione di opinioni e stati d‘animo, creando un corpus testuale di dimensioni incalcolabili aggiornato giornalmente. Le nuove tecniche di Sentiment Analysis, o Opinion Mining, si occupano di analizzare lo stato emotivo o la tipologia di opinione espressa all‘interno di un documento testuale. Esse sono discipline attraverso le quali, per esempio, estrarre indicatori dello stato d‘animo di un individuo, oppure di un insieme di individui, creando una rappresentazione dello stato emotivo sociale. L‘andamento dello stato emotivo sociale può condizionare macroscopicamente l‘evolvere di eventi globali? Studi in campo di Economia e Finanza Comportamentale assicurano un legame fra stato emotivo, capacità nel prendere decisioni ed indicatori economici. Grazie alle tecniche disponibili ed alla mole di dati testuali continuamente aggiornati riguardanti lo stato d‘animo di milioni di individui diviene possibile analizzare tali correlazioni. In questo studio viene costruito un sistema per la previsione delle variazioni di indici di borsa, basandosi su dati testuali estratti dalla piattaforma di microblogging Twitter, sotto forma di tweets pubblici; tale sistema include tecniche di miglioramento della previsione basate sullo studio di similarità dei testi, categorizzandone il contributo effettivo alla previsione.
Resumo:
Analisi e applicazione dei processi di data mining al flusso informativo di sistemi real-time. Implementazione e analisi di un algoritmo autoadattivo per la ricerca di frequent patterns su macchine automatiche.
Resumo:
The uncommon simultaneous occurrence of an exuberant, angioma-like proliferation of superficial cerebral microvessels along with absence of the kidneys has been proposed to constitute a syndromic complex for which the term "meningocerebral angiodysplasia (or angiomatosis) with renal agenesis" (MCA-RA) is being descriptively used. We observed this constellation in one of a pair of dichorionic male twins following postpartal death in the 38th week of pregnancy. General autopsy revealed rudimentary metanephric anlagen made up of few residual glomeruli, cysts lined by flattened tubular epithelium, and islands of cartilage - corresponding to renal aplastic dysplasia. Largely inconspicuous with respect to its gyral pattern, as well as the configuration of the ventricular system, the brain microscopically showed extensive replacement of the cortex by a lattice of proliferating capillaries with necrosis of the intervening parenchyma. Minute foci of calcified necrosis were scattered in the deep subcortical white matter as well, while the ventricular ependyma and the subventricular germ cell layer remained remarkably intact. The cerebellum and brain stem appeared unaffected as well. Karyotyping of skin fibroblasts indicated a normal chromosome set of 46XY without gross structural anomalies. We interpret these findings as ones apt to being reasonably accommodated within the spectrum of MCA-RA. Although exceedingly rare, accurate identification of individual cases of MCA-RA is relevant both to differential diagnosis from its prognostically different look-alike "proliferative vasculopathy and hydranencephaly-hydrocephaly" (PVHH), and to refine the nosology of unconventional pediatric vascular malformations, for which the rather nonspecific label "angiodysgenetic necrotizing encephalopathy" is still commonly used.
Resumo:
Cardiovascular disease is a complex disorder involving multiple pathophysiological processes, several of which involve activation of toll-like receptors (TLRs) of the innate immune system. As sentinels of innate immunity TLRs are nonclonally germline-encoded molecular pattern recognition receptors that recognize exogenous as well as tissue-derived molecular dangers signals promoting inflammation. In addition to their expression in immune cells, TLRs are found in other tissues and cell types including cardiomyocytes, endothelial and vascular smooth muscle cells. TLRs are differentially regulated in various cell types by several cardiovascular risk factors such as hypercholesterolemia, hyperlipidemia, and hyperglycemia and may represent a key mechanism linking chronic inflammation, cardiovascular disease progression, and activation of the immune system. Modulation of TLR signaling by specific TLR agonists or antagonists, alone or in combination, may be a useful therapeutic approach to treat various cardiovascular inflammatory conditions such as atherosclerosis, peripheral arterial disease, secondary microvascular complications of diabetes, autoimmune disease, and ischemia reperfusion injury. In this paper we discuss recent developments and current evidence for the role of TLR in cardiovascular disease as well as the therapeutic potential of various compounds on inhibition of TLR-mediated inflammatory responses.
Resumo:
During the second half of the nineteenth century fraternal and benevolent associations of numerous descriptions grew and prospered in mining communities everywhere. They played an important, but neglected role, in assisting transatlantic migration and movement between mining districts as well as building social capital within emerging mining communities. They helped to build bridges between different ethnic communities, provided conduits between labour and management, and networked miners into the non-mining community. Their influence spread beyond the adult males that made up most of their membership to their wives and families and provided levels of social and economic support otherwise unobtainable at that time. Of course, the influence of these organisations could also be divisive where certain groups or religions were excluded and they may have worked to exacerbate, as much as ameliorate, the problems of community development. This paper will examine some of these issues by looking particularly at the role of Freemasonry and Oddfellowry in Cornwall, Calumet, and Nevada City between 1860 and 1900. Work on fraternity in the Keweenaw was undertaken in Houghton some years ago with a grant from the Copper Country Archive and has since been continued by privately funded research in California and other Western mining states. Some British aspects of this research can be found in my article on mining industrial relations in Labour History Review April 2006
Resumo:
Mobile Mesh Network based In-Transit Visibility (MMN-ITV) system facilitates global real-time tracking capability for the logistics system. In-transit containers form a multi-hop mesh network to forward the tracking information to the nearby sinks, which further deliver the information to the remote control center via satellite. The fundamental challenge to the MMN-ITV system is the energy constraint of the battery-operated containers. Coupled with the unique mobility pattern, cross-MMN behavior, and the large-spanned area, it is necessary to investigate the energy-efficient communication of the MMN-ITV system thoroughly. First of all, this dissertation models the energy-efficient routing under the unique pattern of the cross-MMN behavior. A new modeling approach, pseudo-dynamic modeling approach, is proposed to measure the energy-efficiency of the routing methods in the presence of the cross-MMN behavior. With this approach, it could be identified that the shortest-path routing and the load-balanced routing is energy-efficient in mobile networks and static networks respectively. For the MMN-ITV system with both mobile and static MMNs, an energy-efficient routing method, energy-threshold routing, is proposed to achieve the best tradeoff between them. Secondly, due to the cross-MMN behavior, neighbor discovery is executed frequently to help the new containers join the MMN, hence, consumes similar amount of energy as that of the data communication. By exploiting the unique pattern of the cross-MMN behavior, this dissertation proposes energy-efficient neighbor discovery wakeup schedules to save up to 60% of the energy for neighbor discovery. Vehicular Ad Hoc Networks (VANETs)-based inter-vehicle communications is by now growingly believed to enhance traffic safety and transportation management with low cost. The end-to-end delay is critical for the time-sensitive safety applications in VANETs, and can be a decisive performance metric for VANETs. This dissertation presents a complete analytical model to evaluate the end-to-end delay against the transmission range and the packet arrival rate. This model illustrates a significant end-to-end delay increase from non-saturated networks to saturated networks. It hence suggests that the distributed power control and admission control protocols for VANETs should aim at improving the real-time capacity (the maximum packet generation rate without causing saturation), instead of the delay itself. Based on the above model, it could be determined that adopting uniform transmission range for every vehicle may hinder the delay performance improvement, since it does not allow the coexistence of the short path length and the low interference. Clusters are proposed to configure non-uniform transmission range for the vehicles. Analysis and simulation confirm that such configuration can enhance the real-time capacity. In addition, it provides an improved trade off between the end-to-end delay and the network capacity. A distributed clustering protocol with minimum message overhead is proposed, which achieves low convergence time.