423 resultados para Eigenmodes, Addedmass, NEMOH, FEA, OWSC
Resumo:
This paper reports a micro-electro-mechanical tilt sensor based on resonant sensing principles. The tilt sensor measures orientation by sensing the component of gravitational acceleration along a specified input axis. Design aspects of the tilt sensor are first introduced and a design trade-off between sensitivity, resolution and robustness is addressed. A prototype sensor is microfabricated in a foundry process. The sensor is characterized to validate predictive analytical and FEA models of performance. The prototype is tested over tilt angles ranging over ±90 degrees and the linearity of the sensor is found to be better than 1.4% over the tilt angle range of ±20°. The noise-limited resolution of the sensor is found to be approximately 0.00026 degrees for an integration time of 0.6 seconds. © 2012 IEEE.
Resumo:
This paper proposes a magnetic circuit model (MCM) for the design of a brushless doubly-fed machine (BDFM). The BDFM possesses advantages in terms of high reliability and reduced gearbox stages, and it requires a fractionally-rated power converter. This makes it suitable for utilization in offshore wind turbines. It is difficult for conventional design methods to calculate the flux in the stator because the two sets of stator windings, which have different pole number, form a complex flux pattern which is not easily determined using common analytical approaches. However, it is advantageous to predict the flux density in the teeth and air-gap at the initial design stage for sizing purposes without recourse finite element analysis. Therefore a magnetic circuit model is developed in this paper to calculate the flux density. A BDFM is used as a case study with FEA validation. © 1965-2012 IEEE.
Resumo:
High temperature superconducting (HTS) synchronous motors can offer significant weight and size reductions, as well as improved efficiency, over conventional copper-wound machines due to the higher current density of high temperature superconducting (HTS) materials. In order to optimise the design parameters and performance of such a machine, this paper proposes a basic physical model of an air-cored HTS synchronous motor with a copper armature winding and HTS field winding. An analytical method for the field analysis in the synchronous motor is then presented, followed by a numerical finite element analysis (FEA) model to verify the analytical solution. The model is utilised to study the influence of the geometry of the HTS coils on the magnetic field at the armature winding, and geometrical parameter optimisation is carried out using this theoretical model to obtain a more sinusoidal magnetic field at the armature, which has a major influence on the performance of the motor.
Resumo:
In conventional Finite Element Analysis (FEA) of radial-axial ring rolling (RAR) the motions of all tools are usually defined prior to simulation in the preprocessing step. However, the real process holds up to 8 degrees of freedom (DOF) that are controlled by industrial control systems according to actual sensor values and preselected control strategies. Since the histories of the motions are unknown before the experiment and are dependent on sensor data, the conventional FEA cannot represent the process before experiment. In order to enable the usage of FEA in the process design stage, this approach integrates the industrially applied control algorithms of the real process including all relevant sensors and actuators into the FE model of ring rolling. Additionally, the process design of a novel process 'the axial profiling', in which a profiled roll is used for rolling axially profiled rings, is supported by FEA. Using this approach suitable control strategies can be tested in virtual environment before processing. © 2013 AIP Publishing LLC.
Resumo:
In FEA of ring rolling processes the tools' motions usually are defined prior to simulation. This procedure neglects the closed-loop control, which is used in industrial processes to control up to eight degrees of freedom (rotations, feed rates, guide rolls) in real time, taking into account the machine's performance limits as well as the process evolution. In order to close this gap in the new simulation approach all motions of the tools are controlled according to sensor values which are calculated within the FE simulation. This procedure leads to more realistic simulation results in comparison to the machine behaviour. © 2012 CIRP.
Resumo:
A generalized theory for the viscoelastic behavior of idealized bituminous mixtures (asphalts) is presented. The mathematical model incorporates strain rate and temperature dependency as well as nonmonotonic loading and unloading with shape recovery. The stiffening effect of the aggregate is included. The model is of phenomenological nature. It can be calibrated using a relatively limited set of experimental parameters, obtainable by uniaxial tests. It is shown that the mathematical model can be represented as a special nonlinear form of the Burgers model. This facilitates the derivation of numerical algorithms for solving the constitutive equations. A numerical scheme is implemented in a user material subroutine (UMAT) in the finite-element analysis (FEA) code ABAQUS. Simulation results are compared with uniaxial and indentation tests on an idealized asphalt mix. © 2014 American Society of Civil Engineers.
Resumo:
This paper investigates the design and modelling of an integrated device for acoustic resonance spectroscopy (ARS). Miniaturisation of such platforms can be achieved using MEMS technology thereby enabling scaling of device dimensions to investigate smaller specimens while simultaneously operating at higher frequencies. We propose an integrated device where the transducers are mounted in close proximity with the specimen to be analysed (e.g. by integrating ultrasound transducers within a microfluidic channel). A finite element (FE) model and a simplified analytical model have been constructed to predict the acoustic response of a sample embedded in such a device configuration. A FE simulation is performed in COMSOL by embedding the piezoelectric transducers in representative fluid media. Resonant frequencies associated with the measurement can be extracted from this data. The response of various media modelled through FEA matches with analytical predictions for a range of biological media. A variety of biological media may be identified by using the measured resonant frequencies as a signature of relevant physical characteristics. The paper establishes the modelling basis of an integrated acoustic resonant spectrometer that is then applied to examine the impact of geometrical scaling on system resolution. © 2013 IEEE.
Resumo:
A two dimensional silicon-on-insulator based photonic crystal structure is used to enhance the emission from colloidal HgTe nanocrystal quantum dots embedded in a thin polymer film. The enhancement is resonant to the leaky eigenmodes of the photonic crystals due to coherent scattering effects. Transmittance and photoluminescence experiments are presented to map the leaky mode dispersion and the angle dependence of the emission enhancement factor, which reaches values up to 80 (650) for vertical (oblique) emission in the telecommunication wavelength range.
Resumo:
We report the fabrication and the measurement of microcavities whose optical eigenmodes were discrete and were well predicted by using the model of the photonic dot with perfectly reflected sidewalls. These microcavities were consisted of the semiconductor pillar fabricated by the simple wet-etched process and successive metal coating. Angle-resolved photoluminescence spectra demonstrate the characteristic emission of the corresponding eigenmodes, as its pattern revealed by varying both polar (0) and azimuthal (45) angles. It is shown that the metal-coated sidewalls can provide an efficient way to suppress the emission due to the leaking modes in these pillar microcavities.
Resumo:
The eigenmodes confined in the equilateral triangle resonator (ETR) are analyzed by deriving the eigenvalues and the mode field distributions and by the finite difference time domain (FDTD) technique. The analytical results show that the one-period-length for the mode light rays inside the ETR is the perimeter of the ETR, and the number of transverse modes is limited by the condition of total internal reflection. In addition, the sum of the longitudinal mode index and the transverse mode index should be an even number, which limits the number of confined modes again. Based on the FDTD technique and the Pade approximation, we calculate the mode resonant frequencies and the quality factors from the local maximum and the width of the spectral distribution of the intensity The numerical results of mode frequencies agree very well with the analytical results, and the quality factor of the fundamental mode is usually higher than that of the higher order transverse modes. The results show that the ETR is suitable to realize single-made operation as semiconductor microcavity lasers.
Resumo:
In this paper, the SiC-based clamped-clamped filter was designed and fabricated. The filter was composed of two clamped-clamped beam micromechanical resonators coupled by a spring coupling beam. Structural geometries, including the length and width of the resonator beam and coupling beam, were optimized by simulation for high frequency and high Q, under the material properties of SiC. The vibrating modes for the designed filter structure were analyzed by finite element analysis (FEA) method. For the optimized structure, the geometries of resonator beams and coupling beams, as well as the coupling position, the SiC-based clamped-clamped filter was fabricated by surface micromaching technology.
Resumo:
The nonmodal linear stability of a falling film over a porous inclined plane has been investigated. The base flow is driven by gravity. We use Darcy's law to describe the flow in the porous medium. A simplified one-sided model is used to describe the fluid flow. In this model, the influence of the porous layer on the flow in the film can be identified by a parameter beta. The instabilities of a falling film have traditionally been investigated by linearizing the governing equations and testing for unstable eigenvalues of the linearized problem. However, the results of eigenvalue analysis agree poorly in many cases with experiments, especially for shear flows. In the present paper, we have studied the linear stability of three-dimensional disturbances using the nonmodal stability theory. Particular attentions are paid to the transient behavior rather than the long time behavior of eigenmodes predicted by traditional normal mode analysis. The transient behaviors of the response to external excitations and the response to initial conditions are studied by examining the pseudospectral structures and the energy growth function G(t) Before we study the nonmodal stability of the system, we extend the results of long-wave analysis in previous works by examining the linear stabilities for streamwise and spanwise disturbances. Results show that the critical conditions of both the surface mode and the shear mode instabilities are dependent on beta for streamwise disturbances. However, the spanwise disturbances have no unstable eigenvalue. 2010 American Institute of Physics. [doi:10.1063/1.3455503]
Resumo:
黄土高原地区地形破碎 ,坡地所占比例大 ,水土流失严重。调查和试验表明 ,在坡耕地上 ,因地制宜地采取各种水土保持耕作技术措施 ,对改变坡面微地貌 ,减少水土流失 ,增加土壤抗蚀、蓄水、保土性能 ;培肥地力和提高作物产量 ,都具有显著作用。该文着重分析了效果明显的 8种耕作技术及其特征 ,供决策部门在制订规划时参考。
Resumo:
为了提高刨削加工能力,而采用考虑到并联机构的特点而提出了并联刨床的概念并对其进行了简单说明.采用对机床进行分解的方法对机床的各功能模块分别建立刚度模型,并利用变形线性叠加的原理对机床的并联部分刚度进行分析.采用有限元软件对机床的床身框架及平面约束机构部分的刚度进行分析.并以仿真和实验加工的方式进行了刚度特性研究.