897 resultados para Effects and Usages
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
High consumption of polyunsaturated fatty acids, such as sunflower oil has been associated to beneficial effects in plasma lipid profile, but its role on inflammation and insulin resistance is not fully elucidated yet. We evaluated the effect of sunflower oil supplementation on inflammatory state and insulin resistance condition in HFD-induced obese mice. C57BL/ 6 male mice (8 weeks) were divided in four groups: (a) control diet (CD), (b) HFD, (c) CD supplemented with n-6 (CD + n-6), and (d) HFD supplemented with n-6 (HFD + n-6). CD + n-6 and HFD + n-6 were supplemented with sunflower oil by oral gavage at 2 g/ Kg of body weight, three times per week. CD and HFD were supplemented with water instead at the same dose. HFD induced whole andmuscle-specific insulin resistance associated with increased inflammatory markers in insulin-sensitive tissues andmacrophage cells. Sunflower oil supplementation was not efficient in preventing or reducing these parameters. In addition, the supplementation increased pro-inflammatory cytokine production by macrophages and tissues. Lipid profile, on the other hand, was improved with the sunflower oil supplementation in animals fed HFD. In conclusion, sunflower oil supplementation improves lipid profile, but it does not prevent or attenuate insulin resistance and inflammation induced by HFD in C57BL/ 6 mice.
Resumo:
This study reports the effects on micromorphology and temperature rise in human dentin using different frequencies of Er:YAG laser. Sixty human dentin fragments were randomly assigned into two groups (n = 30): carious or sound dentin. Both groups were divided into three subgroups (n = 10), according to the Er:YAG laser frequency used: 4, 6, or 10 Hz (energy: 200 mJ; irradiation distance: 12 mm; and irradiation time: 20 s). A thermocouple adapted to the tooth fragment recorded the initial temperature value (degrees C); then, the temperature was measured after the end of the irradiation (20 s). Morphological analysis was performed using images obtained with scanning electron microscope. There was no difference between the temperatures obtained with 4 and 6 Hz; the highest temperatures were achieved with 10 Hz. No difference was observed between carious and sound dentin. Morphological analyses revealed that all frequencies promoted irregular surface in sound dentin, being observed more selectively ablation especially in intertubular dentin with tubule protrusion. The caries dentin presented flat surface for all frequencies used. Both substrates revealed absence of any signs of thermal damage. It may be concluded that the parameters used in this study are capable to remove caries lesion, having acceptable limits of temperature rise and no significant morphological alterations on dentin surface. Microsc. Res. Tech. 2012. (c) 2012 Wiley Periodicals, Inc.
Resumo:
Programa de doctorado: Perspectivas científicas sobre el Turismo y la dirección de empresas turísticas
Resumo:
Computer simulations have become an important tool in physics. Especially systems in the solid state have been investigated extensively with the help of modern computational methods. This thesis focuses on the simulation of hydrogen-bonded systems, using quantum chemical methods combined with molecular dynamics (MD) simulations. MD simulations are carried out for investigating the energetics and structure of a system under conditions that include physical parameters such as temperature and pressure. Ab initio quantum chemical methods have proven to be capable of predicting spectroscopic quantities. The combination of these two features still represents a methodological challenge. Furthermore, conventional MD simulations consider the nuclei as classical particles. Not only motional effects, but also the quantum nature of the nuclei are expected to influence the properties of a molecular system. This work aims at a more realistic description of properties that are accessible via NMR experiments. With the help of the path integral formalism the quantum nature of the nuclei has been incorporated and its influence on the NMR parameters explored. The effect on both the NMR chemical shift and the Nuclear Quadrupole Coupling Constants (NQCC) is presented for intra- and intermolecular hydrogen bonds. The second part of this thesis presents the computation of electric field gradients within the Gaussian and Augmented Plane Waves (GAPW) framework, that allows for all-electron calculations in periodic systems. This recent development improves the accuracy of many calculations compared to the pseudopotential approximation, which treats the core electrons as part of an effective potential. In combination with MD simulations of water, the NMR longitudinal relaxation times for 17O and 2H have been obtained. The results show a considerable agreement with the experiment. Finally, an implementation of the calculation of the stress tensor into the quantum chemical program suite CP2K is presented. This enables MD simulations under constant pressure conditions, which is demonstrated with a series of liquid water simulations, that sheds light on the influence of the exchange-correlation functional used on the density of the simulated liquid.
Resumo:
A nanostructured thin film is a thin material layer, usually supported by a (solid) substrate, which possesses subdomains with characteristic nanoscale dimensions (10 ~ 100 nm) that are differentiated by their material properties. Such films have captured vast research interest because the dimensions and the morphology of the nanostructure introduce new possibilities to manipulating chemical and physical properties not found in bulk materials. Block copolymer (BCP) self-assembly, and anodization to form nanoporous anodic aluminium oxide (AAO), are two different methods for generating nanostructures by self-organization. Using poly(styrene-block-methyl methacrylate) (PS-b-PMMA) nanopatterned thin films, it is demonstrated that these polymer nanopatterns can be used to study the influence of nanoscale features on protein-surface interactions. Moreover, a method for the directed assembly of adsorbed protein nanoarrays, based on the nanoscale juxtaposition of the BCP surface domains, is also demonstrated. Studies on protein-nanopattern interactions may inform the design of biomaterials, biosensors, and relevant cell-surface experiments that make use of nanoscale structures. In addition, PS-b-PMMA and AAO thin films are also demonstrated for use as optical waveguides at visible wavelengths. Due to the sub-wavelength nature of the nanostructures, scattering losses are minimized, and the optical response is amenable to analysis with effective medium theory (EMT). Optical waveguide measurements and EMT analysis of the films’ optical anisotropy enabled the in situ characterization of the PS-b-PMMA nanostructure, and a variety of surface processes within the nanoporous AAO involving (bio)macromolecules at high sensitivity.
Resumo:
Natural stones have been widely used in the construction field since antiquity. Building materials undergo decay processes due to mechanical,chemical, physical and biological causes that can act together. Therefore an interdisciplinary approach is required in order to understand the interaction between the stone and the surrounding environment. Utilization of buildings, inadequate restoration activities and in general anthropogenic weathering factors may contribute to this degradation process. For this reasons, in the last few decades new technologies and techniques have been developed and introduced in the restoration field. Consolidants are largely used in restoration and conservation of cultural heritage in order to improve the internal cohesion and to reduce the weathering rate of building materials. It is important to define the penetration depth of a consolidant for determining its efficacy. Impregnation mainly depends on the microstructure of the stone (i.e. porosity) and on the properties of the product itself. Throughout this study, tetraethoxysilane (TEOS) applied on globigerina limestone samples has been chosen as object of investigation. After hydrolysis and condensation, TEOS deposits silica gel inside the pores, improving the cohesion of the grains. X-ray computed tomography has been used to characterize the internal structure of the limestone samples,treated and untreated with a TEOS-based consolidant. The aim of this work is to investigate the penetration depth and the distribution of the TEOS inside the porosity, using both traditional approaches and advanced X-ray tomographic techniques, the latter allowing the internal visualization in three dimensions of the materials. Fluid transport properties and porosity have been studied both at macroscopic scale, by means of capillary uptake tests and radiography, and at microscopic scale,investigated with X-ray Tomographic Microscopy (XTM). This allows identifying changes in the porosity, by comparison of the images before and after the treatment, and locating the consolidant inside the stone. Tests were initially run at University of Bologna, where characterization of the stone was carried out. Then the research continued in Switzerland: X-ray tomography and radiography were performed at Empa, Swiss Federal Laboratories for Materials Science and Technology, while XTM measurements with synchrotron radiation were run at Paul Scherrer Institute in Villigen.
Resumo:
Purpose To evaluate geriatric assessment (GA) domains in relation to clinically important outcomes in older breast cancer survivors. Methods Six hundred sixty women diagnosed with primary breast cancer in four US geographic regions (Los Angeles, CA; Minnesota; North Carolina; and Rhode Island) were selected with disease stage I to IIIA, age ≥ 65 years at date of diagnosis, and permission from attending physician to contact. Data were collected over 7 years of follow-up from consenting patients' medical records, telephone interviews, physician questionnaires, and the National Death Index. Outcomes included self-reported treatment tolerance and all-cause mortality. Four GA domains were described by six individual measures, as follows: sociodemographic by adequate finances; clinical by Charlson comorbidity index (CCI) and body mass index; function by number of physical function limitations; and psychosocial by the five-item Mental Health Index (MHI5) and Medical Outcomes Study Social Support Survey (MOS-SSS). Associations were evaluated using t tests, χ2 tests, and regression analyses. Results In multivariable regression including age and stage, three measures from two domains (clinical and psychosocial) were associated with poor treatment tolerance; these were CCI ≥ 1 (odds ratio [OR] = 2.49; 95% CI, 1.18 to 5.25), MHI5 score less than 80 (OR = 2.36; 95% CI, 1.15 to 4.86), and MOS-SSS score less than 80 (OR = 3.32; 95% CI, 1.44 to 7.66). Four measures representing all four GA domains predicted mortality; these were inadequate finances (hazard ratio [HR] = 1.89; 95% CI, 1.24 to 2.88; CCI ≥ 1 (HR = 1.38; 95% CI, 1.01 to 1.88), functional limitation (HR = 1.40; 95% CI, 1.01 to 1.93), and MHI5 score less than 80 (HR = 1.34; 95% CI, 1.01 to 1.85). In addition, the proportion of women with these outcomes incrementally increased as the number of GA deficits increased. Conclusion This study provides longitudinal evidence that GA domains are associated with poor treatment tolerance and predict mortality at 7 years of follow-up, independent of age and stage of disease.
Resumo:
The impact of nanoparticles (NPs) in medicine and biology has increased rapidly in recent years. Gold NPs have advantageous properties such as chemical stability, high electron density and affinity to biomolecules, making them very promising candidates as drug carriers and diagnostic tools. However, diverse studies on the toxicity of gold NPs have reported contradictory results. To address this issue, a triple cell co-culture model simulating the alveolar lung epithelium was used and exposed at the air-liquid interface. The cell cultures were exposed to characterized aerosols with 15 nm gold particles (61 ng Au/cm2 and 561 ng Au/cm2 deposition) and incubated for 4 h and 24 h. Experiments were repeated six times. The mRNA induction of pro-inflammatory (TNFalpha, IL-8, iNOS) and oxidative stress markers (HO-1, SOD2) was measured, as well as protein induction of pro- and anti-inflammatory cytokines (IL-1, IL-2, IL-4, IL-6, IL-8, IL-10, GM-CSF, TNFalpha, INFgamma). A pre-stimulation with lipopolysaccharide (LPS) was performed to further study the effects of particles under inflammatory conditions. Particle deposition and particle uptake by cells were analyzed by transmission electron microscopy and design-based stereology. A homogeneous deposition was revealed, and particles were found to enter all cell types. No mRNA induction due to particles was observed for all markers. The cell culture system was sensitive to LPS but gold particles did not cause any synergistic or suppressive effects. With this experimental setup, reflecting the physiological conditions more precisely, no adverse effects from gold NPs were observed. However, chronic studies under in vivo conditions are needed to entirely exclude adverse effects.
Tackling of unhealthy diets, physical inactivity, and obesity: health effects and cost-effectiveness
Resumo:
The obesity epidemic is spreading to low-income and middle-income countries as a result of new dietary habits and sedentary ways of life, fuelling chronic diseases and premature mortality. In this report we present an assessment of public health strategies designed to tackle behavioural risk factors for chronic diseases that are closely linked with obesity, including aspects of diet and physical inactivity, in Brazil, China, India, Mexico, Russia, and South Africa. England was included for comparative purposes. Several population-based prevention policies can be expected to generate substantial health gains while entirely or largely paying for themselves through future reductions of health-care expenditures. These strategies include health information and communication strategies that improve population awareness about the benefits of healthy eating and physical activity; fiscal measures that increase the price of unhealthy food content or reduce the cost of healthy foods rich in fibre; and regulatory measures that improve nutritional information or restrict the marketing of unhealthy foods to children. A package of measures for the prevention of chronic diseases would deliver substantial health gains, with a very favourable cost-effectiveness profile.
Resumo:
The central issue in organ transplantation remains suppression of allograft rejection. Immunosuppression can be achieved by depleting lymphocytes, diverting lymphocyte traffic, or blocking lymphocyte response pathways. Immunosuppressive drugs include small-molecule drugs, depleting and nondepleting protein drugs (polyclonal and monoclonal antibodies), fusion proteins, intravenous immune globulin, and glucocorticoids. Small-molecule immunosuppressive agents include calcineurin-inhibitors (cyclosporine, tacrolimus), Target-of-Rapamycin Inhibitors (Sirolimus, Everolimus), inhibitors of nucleotide synthesis and azathioprine. The review covers the mode of action of these drugs with a special focus on belatacept, a new promising fusion protein. Different immuo-suppressive strategies mean also different safety profiles. Common side effects include the consequences of diminished immuno- response, i.e. infections and cancer (mainly involving the skin). Toxic side effects of immunosuppressive drugs range in a wide spectrum that involves almost every organ. The major interest of this toxic effects is the cardiovascular tolerance (with large differences from drug to drug), that are discussed seperately. The calcineurin- and mTOR-inhibitors are both metabolized by the CYP450 3A4 enzyme, which is also involved in the metabolism of many other drugs. The review discusses the most important interactions that in- or decreases the through level of these drugs.