939 resultados para ENERGY LEVEL CROSSING
Resumo:
Pós-graduação em Ciência Animal - FMVA
Resumo:
The sol-gel process is a technique based on the hydrolysis and polycondensation of metal alkoxides have been investigated as an alternative for the preparation of vitreous or glassceramic materials, for allowing the obtaining of high-purity materials at low temperatures, and to obtain hybrid materials with different compositions. When ORMOSILs are doped with nanoparticles, are called nanocomposites, and its functionality arises when electrons confined in scale three-dimensional structures near zero are excited. In principle, such materials exhibit discrete energy level, with peaks in the absorption spectrum. Therefore, the glasses doped semiconductor nanocrystals are important candidates for the preparation of optical filters with sharp cut-off, and are being exploited commercially for coloring glasses. This study evaluates the optical properties presented by hybrid films of silica doped with copper nanoparticles. The matrix was prepared using the alkoxides 3-glycidoxypropyltrimethoxysilane (GPTS) and tetraethylorthosilicate (TEOS) doped with Cu2O and hydrolyzed under reflux conditions in two different acidic conditions (HCl and HBr). After thermal treatment at temperatures between 100 °C and 170 °C and/or under the action of commercial black light radiation, CuCl and CuBr present in the hybrid film are transformed into nanoparticles of CuCl or CuBr. The UV-VIS absorption identified the absorption bands, and its variation
Resumo:
Estudou-se a melhor relação entre lisina digestível (LIS) e energia metabolizável (EM) e efeitos no desempenho e balanço de nitrogênio em leitões na fase de creche. No desempenho foram usados 216 leitões dos 6,90 ± 1,11 kg de peso inicial aos 12 kg, aproximadamente. No metabolismo eram 48 leitões com 9,31 ± 2,09 kg. As concentrações de LIS eram: 1,302; 1,390 e 1,497% e de EM: 3.510, 3.700 e 3.830 kcal/kg, combinadas em um arranjo fatorial 3 × 4 e distribuídas em delineamento de blocos ao acaso. No desempenho dos leitões houve interação LIS em no ganho de peso e conversão alimentar. No ganho de peso a resposta para LIS foi linear crescente nas dietas com 3.510 kcal e 3.830 kcal de EM. Na conversão alimentar observou-se efeito quadrático de LIS nas dietas que continham 3.510 kcal e efeito linear de LIS nas dietas com 3.830 kcal de EM. O efeito quadrático de LIS dentro de 3.510 kcal indicou 1,44% do aminoácido digestível como nível ótimo ou a ingestão de 4,16 g LIS/Mcal de em consumida. A resposta linear positiva na conversão alimentar ao acréscimo de LIS nas dietas com 3.830 kcal em indica maior eficiência dos leitões ao acréscimo do aminoácido quando o nível de energia é alto. No ensaio de metabolismo o aumento de em sugere maior retenção de N, enquanto o acréscimo de LIS sugere menor retenção do N ou na relação Mcal de EM:% LIS. A interação observada nos dois ensaios, todavia, indica que a relação LIS:EM, depende do nível energético e da característica considerada. A variação de LIS e em na dieta indica 4 g LIS/Mcal de em consumida, o que corresponde à ingestão diária aproximada de 7,8 g de LIS.
Resumo:
Most consumers consider the fat of chicken meat undesirable for a healthy diet, due to the high levels of saturated fatty acids and cholesterol. The purpose of this experiment was to investigate the influence of changes in dietary metabolizable energy level, associated with a proportional nutrient density variation, on broiler chickens performance and on the lipid composition of meat. Males and females Cobb 500 broilers were evaluated separately. Performance evaluation followed a completely randomized design with factorial 6x3 arrangement - six energy levels (2,800, 2,900, 3,000, 3,100, 3,200 and 3,300 kcal/kg) and three slaughter ages (42, 49 and 56 days). Response surface methodology was used to establish a mathematical model to explain live weight, feed intake and feed conversion behavior. Total lipids and cholesterol were determined in skinned breast meat and in thigh meat, with and without skin. For lipid composition analysis, a 3x3x2 factorial arrangement in a completely randomized design - three ration’s metabolizable energy levels (2,800, 3,000 and 3,300 kcal/kg), three slaughter ages (42, 49 and 56 days) and two sexes - was used. The reduction in the diet metabolizable energy up to close to 3,000 kcal/kg did not affect live weight but, below this value, the live weight decreased. Feed intake was lower when the dietary energy level was higher. Feed conversion was favored in a direct proportion to the increase of the energy level of the diet. The performance of all birds was within the range considered appropriate for the lineage. Breast meat had less total lipids and cholesterol than thigh meat. Thigh with skin had more than the double of total lipids of skinned thigh, but the cholesterol content did not differ with the removal of the skin, suggesting that cholesterol content is not associated with the subcutaneous fat. Intramuscular fat content was lower in the meat from birds fed diets with lower energy level. These results may help to define the most appropriate nutritional management. Despite the decrease in bird’s productive performance, the restriction of energy in broiler chickens feed may be a viable alternative, if the consumers are willing to pay more for meat with less fat.
Resumo:
In this report, we investigate the influence of temperature on the two-photon absorption (2PA) spectrum of all-trans-beta-carotene using the femtosecond white-light-continuum Z-scan technique. We observed that the 2PA cross-section decreases quadratically with the temperature. Such effect was modeled using a three-energy-level diagram within the sum-over-essential states approach, assuming temperature dependencies to the transition dipole moment and refractive index of the solvent. The results show that the transition dipole moments from ground to excited state and between the excited states, which governed the two-photon matrix element, have distinct behaviors with the temperature. The first one presents a quadratic dependence, while the second exhibits a linear dependence. Such effects were attributed mainly to the trans -> cis thermal interconversion process, which decreases the effective conjugation length, contributing to diminishing the transition dipole moments and, consequently, the 2PA cross-section.
Resumo:
The methaneseleninate and 1,10-phenanthroline were used as ligands in the synthesis of new lanthanide complexes. The photostability, emission quantum yield (q) and quantum efficiency (eta) of the D-5(0) emitting level of the Eu3+ ion were determined. An energy level diagram was used to establish the most relevant channels involved in the ligand-to-metal intramolecular energy transfer process. The nephelauxetic effect was investigated to assess the covalency of the ligand-metal chemical bond. The values of the experimental 4f-4f intensity parameters, suggest that this ion is in a chemical environment less polarisable than in the case of complexes with beta-diketonates as ligands. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This Article reports a combined experimental and theoretical analysis on the one and two-photon absorption properties of a novel class of organic molecules with a pi-conjugated backbone based on phenylacetylene (JCM874, FD43, and FD48) and azoaromatic (YB3p2S) moieties. Linear optical properties show that the phenylacetylene-based compounds exhibit strong molar absorptivity in the UV and high fluorescence quantum yield with lifetimes of approximately 2.0 ns, while the azoaromatic-compound has a strong absorption in the visible region with very low fluorescence quantum yield. The two-photon absorption was investigated employing nonlinear optical techniques and quantum chemical calculations based on the response functions formalism within the density functional theory framework. The experimental data revealed well-defined 2PA spectra with reasonable cross-section values in the visible and IR. Along the nonlinear spectra we observed two 2PA allowed bands, as well as the resonance enhancement effect due to the presence of one intermediate one-photon allowed state. Quantum chemical calculations revealed that the 2PA allowed bands correspond to transitions to states that are also one-photon allowed, indicating the relaxation of the electric-dipole selection rules. Moreover, using the theoretical results, we were able to interpret the experimental trends of the 2PA spectra. Finally, using a few-energy-level diagram, within the sum-over-essential states approach, we observed strong qualitative and quantitative correlation between experimental and theoretical results.
Resumo:
Positronium formation in the bimary molecular solid solutions Tb1-xEux (dpm)(3) (dpm = dipivaloylmethanate) has been investigated. A strong linear correlation between the D-5(4) Tb(III) energy level excited state lifetime and the positronium formation probability has been observed. This correlation indicates that the ligand-to-metal charge transfer LMCT states act in both luminescence quenching and positronium formation inhibition, as previously proposed. A kinetic mechanism is proposed to explain this correlation and shows that excited electronic states have a very important role in the positronium formation mechanism.
Resumo:
In this study we investigate the singlet excited state absorption of lutetium bisphthalocyanine (LuPc2) over a wide spectral range. It was observed distinct nonlinear absorption behaviors; saturable (SA) and reverse saturable absorption (RSA). The RSA effect was observed below 640 and above 680 nm, while SA occurs around the Q-band region, located around 660 nm. To describe the main singlet-singlet transitions, we employed the rate equation model considering the simplified three-energy level diagram. Our results reveal a ratio between excited and ground state absorption smaller than 0.05 at the Q-band region, and of approximately 4 for the other regions. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
This work reports on the photophysical properties of zinc porphyrins meso-tetrakis methylpyridiniumyl (Zn2+TMPyP) and meso-tetrakis sulfonatophenyl (Zn2+TPPS) in homogeneous aqueous solutions and in the presence of sodium dodecyl sulfate (SDS) and cetyltrimethyl ammonium bromide (CTAB) micelles. The excited-state dynamic was investigated with the Z-scan technique, UV-Vis absorption, and fluorescence spectroscopy. Photophysical parameters were obtained by analyzing the experimental data with a conventional five-energy-level diagram. The interaction of the charged side porphyrin groups with oppositely charged surfactants can reduce the electrostatic repulsion between porphyrin molecules leading to aggregation, which affected the porphyrin characteristics such as absorption cross-sections, lifetimes and quantum yields. The interaction between anionic ZnTPPS with cationic CTAB micelles induced the formation of porphyrin J-aggregates, while this effect was not observed in the interaction of ZnTMPyP with SDS micelles. This difference is, probably, due to the difference in electrostatic repulsion between the porphyrin molecules. The insights obtained by these results are important for the understanding of the photophysical behavior of porphyrins, regarding potential applications in pharmacokinetics as encapsulation of photosensitizer for drug delivery systems and in its interaction with cellular membrane.
Resumo:
The term Ambient Intelligence (AmI) refers to a vision on the future of the information society where smart, electronic environment are sensitive and responsive to the presence of people and their activities (Context awareness). In an ambient intelligence world, devices work in concert to support people in carrying out their everyday life activities, tasks and rituals in an easy, natural way using information and intelligence that is hidden in the network connecting these devices. This promotes the creation of pervasive environments improving the quality of life of the occupants and enhancing the human experience. AmI stems from the convergence of three key technologies: ubiquitous computing, ubiquitous communication and natural interfaces. Ambient intelligent systems are heterogeneous and require an excellent cooperation between several hardware/software technologies and disciplines, including signal processing, networking and protocols, embedded systems, information management, and distributed algorithms. Since a large amount of fixed and mobile sensors embedded is deployed into the environment, the Wireless Sensor Networks is one of the most relevant enabling technologies for AmI. WSN are complex systems made up of a number of sensor nodes which can be deployed in a target area to sense physical phenomena and communicate with other nodes and base stations. These simple devices typically embed a low power computational unit (microcontrollers, FPGAs etc.), a wireless communication unit, one or more sensors and a some form of energy supply (either batteries or energy scavenger modules). WNS promises of revolutionizing the interactions between the real physical worlds and human beings. Low-cost, low-computational power, low energy consumption and small size are characteristics that must be taken into consideration when designing and dealing with WSNs. To fully exploit the potential of distributed sensing approaches, a set of challengesmust be addressed. Sensor nodes are inherently resource-constrained systems with very low power consumption and small size requirements which enables than to reduce the interference on the physical phenomena sensed and to allow easy and low-cost deployment. They have limited processing speed,storage capacity and communication bandwidth that must be efficiently used to increase the degree of local ”understanding” of the observed phenomena. A particular case of sensor nodes are video sensors. This topic holds strong interest for a wide range of contexts such as military, security, robotics and most recently consumer applications. Vision sensors are extremely effective for medium to long-range sensing because vision provides rich information to human operators. However, image sensors generate a huge amount of data, whichmust be heavily processed before it is transmitted due to the scarce bandwidth capability of radio interfaces. In particular, in video-surveillance, it has been shown that source-side compression is mandatory due to limited bandwidth and delay constraints. Moreover, there is an ample opportunity for performing higher-level processing functions, such as object recognition that has the potential to drastically reduce the required bandwidth (e.g. by transmitting compressed images only when something ‘interesting‘ is detected). The energy cost of image processing must however be carefully minimized. Imaging could play and plays an important role in sensing devices for ambient intelligence. Computer vision can for instance be used for recognising persons and objects and recognising behaviour such as illness and rioting. Having a wireless camera as a camera mote opens the way for distributed scene analysis. More eyes see more than one and a camera system that can observe a scene from multiple directions would be able to overcome occlusion problems and could describe objects in their true 3D appearance. In real-time, these approaches are a recently opened field of research. In this thesis we pay attention to the realities of hardware/software technologies and the design needed to realize systems for distributed monitoring, attempting to propose solutions on open issues and filling the gap between AmI scenarios and hardware reality. The physical implementation of an individual wireless node is constrained by three important metrics which are outlined below. Despite that the design of the sensor network and its sensor nodes is strictly application dependent, a number of constraints should almost always be considered. Among them: • Small form factor to reduce nodes intrusiveness. • Low power consumption to reduce battery size and to extend nodes lifetime. • Low cost for a widespread diffusion. These limitations typically result in the adoption of low power, low cost devices such as low powermicrocontrollers with few kilobytes of RAMand tenth of kilobytes of program memory with whomonly simple data processing algorithms can be implemented. However the overall computational power of the WNS can be very large since the network presents a high degree of parallelism that can be exploited through the adoption of ad-hoc techniques. Furthermore through the fusion of information from the dense mesh of sensors even complex phenomena can be monitored. In this dissertation we present our results in building several AmI applications suitable for a WSN implementation. The work can be divided into two main areas:Low Power Video Sensor Node and Video Processing Alghoritm and Multimodal Surveillance . Low Power Video Sensor Nodes and Video Processing Alghoritms In comparison to scalar sensors, such as temperature, pressure, humidity, velocity, and acceleration sensors, vision sensors generate much higher bandwidth data due to the two-dimensional nature of their pixel array. We have tackled all the constraints listed above and have proposed solutions to overcome the current WSNlimits for Video sensor node. We have designed and developed wireless video sensor nodes focusing on the small size and the flexibility of reuse in different applications. The video nodes target a different design point: the portability (on-board power supply, wireless communication), a scanty power budget (500mW),while still providing a prominent level of intelligence, namely sophisticated classification algorithmand high level of reconfigurability. We developed two different video sensor node: The device architecture of the first one is based on a low-cost low-power FPGA+microcontroller system-on-chip. The second one is based on ARM9 processor. Both systems designed within the above mentioned power envelope could operate in a continuous fashion with Li-Polymer battery pack and solar panel. Novel low power low cost video sensor nodes which, in contrast to sensors that just watch the world, are capable of comprehending the perceived information in order to interpret it locally, are presented. Featuring such intelligence, these nodes would be able to cope with such tasks as recognition of unattended bags in airports, persons carrying potentially dangerous objects, etc.,which normally require a human operator. Vision algorithms for object detection, acquisition like human detection with Support Vector Machine (SVM) classification and abandoned/removed object detection are implemented, described and illustrated on real world data. Multimodal surveillance: In several setup the use of wired video cameras may not be possible. For this reason building an energy efficient wireless vision network for monitoring and surveillance is one of the major efforts in the sensor network community. Energy efficiency for wireless smart camera networks is one of the major efforts in distributed monitoring and surveillance community. For this reason, building an energy efficient wireless vision network for monitoring and surveillance is one of the major efforts in the sensor network community. The Pyroelectric Infra-Red (PIR) sensors have been used to extend the lifetime of a solar-powered video sensor node by providing an energy level dependent trigger to the video camera and the wireless module. Such approach has shown to be able to extend node lifetime and possibly result in continuous operation of the node.Being low-cost, passive (thus low-power) and presenting a limited form factor, PIR sensors are well suited for WSN applications. Moreover techniques to have aggressive power management policies are essential for achieving long-termoperating on standalone distributed cameras needed to improve the power consumption. We have used an adaptive controller like Model Predictive Control (MPC) to help the system to improve the performances outperforming naive power management policies.
Resumo:
Die vorliegende Arbeit ist motiviert durch biologische Fragestellungen bezüglich des Verhaltens von Membranpotentialen in Neuronen. Ein vielfach betrachtetes Modell für spikende Neuronen ist das Folgende. Zwischen den Spikes verhält sich das Membranpotential wie ein Diffusionsprozess X der durch die SDGL dX_t= beta(X_t) dt+ sigma(X_t) dB_t gegeben ist, wobei (B_t) eine Standard-Brown'sche Bewegung bezeichnet. Spikes erklärt man wie folgt. Sobald das Potential X eine gewisse Exzitationsschwelle S überschreitet entsteht ein Spike. Danach wird das Potential wieder auf einen bestimmten Wert x_0 zurückgesetzt. In Anwendungen ist es manchmal möglich, einen Diffusionsprozess X zwischen den Spikes zu beobachten und die Koeffizienten der SDGL beta() und sigma() zu schätzen. Dennoch ist es nötig, die Schwellen x_0 und S zu bestimmen um das Modell festzulegen. Eine Möglichkeit, dieses Problem anzugehen, ist x_0 und S als Parameter eines statistischen Modells aufzufassen und diese zu schätzen. In der vorliegenden Arbeit werden vier verschiedene Fälle diskutiert, in denen wir jeweils annehmen, dass das Membranpotential X zwischen den Spikes eine Brown'sche Bewegung mit Drift, eine geometrische Brown'sche Bewegung, ein Ornstein-Uhlenbeck Prozess oder ein Cox-Ingersoll-Ross Prozess ist. Darüber hinaus beobachten wir die Zeiten zwischen aufeinander folgenden Spikes, die wir als iid Treffzeiten der Schwelle S von X gestartet in x_0 auffassen. Die ersten beiden Fälle ähneln sich sehr und man kann jeweils den Maximum-Likelihood-Schätzer explizit angeben. Darüber hinaus wird, unter Verwendung der LAN-Theorie, die Optimalität dieser Schätzer gezeigt. In den Fällen OU- und CIR-Prozess wählen wir eine Minimum-Distanz-Methode, die auf dem Vergleich von empirischer und wahrer Laplace-Transformation bezüglich einer Hilbertraumnorm beruht. Wir werden beweisen, dass alle Schätzer stark konsistent und asymptotisch normalverteilt sind. Im letzten Kapitel werden wir die Effizienz der Minimum-Distanz-Schätzer anhand simulierter Daten überprüfen. Ferner, werden Anwendungen auf reale Datensätze und deren Resultate ausführlich diskutiert.
Resumo:
Ion traps have been established as a powerful tool for ion cooling and laser spectroscopy experiments since a long time ago. SpecTrap, one of the precision experiments associated to the HITRAP facility at GSI, is implementing a Penning trap for studies of large bunches of externally produced highly charged ions. The extremely strong electric and magnetic fields that exist around the nuclei of heavy elements drastically change their electronic properties, such as energy level spacings and radiative lifetimes. The electrons can therefore serve as sensitive probes for nuclear properties such as size, magnetic moment and spatial distribution of charge and magnetization. The energies of forbidden fine and hyperfine structure transitions in such ions strongly depend on the nuclear charge and shift from the microwave domain into the optical domain. Thus, they become accessible for laser spectroscopy and its potentially high accuracy. A number of such measurements has been performed in storage rings and electron beam ion traps and yielded results with relative accuracies in the 10
Resumo:
Small, smaller, nano - it is a milestone in the development of new materials and technologies. Nanoscience is now present in our daily lives: in the car industry with self-cleaning surfaces, in medicine with cancer therapies, even our clothes and cosmetics utilize nanoparticles. The number and variety of applications has been growing fast in recent years, and the possibilities seem almost infinite. Nanoparticles made of inorganic materials have found applications in new electronic technologies, and organic nanomaterials have been added to resins to produce very strong but light weight materials.rnThis work deals with the combination of organic and inorganic materials for the fabrication of new, functional hybrid systems. For that purpose, block copolymers were made with a long, solubility-enhancing and semiconducting block, and a short anchor block. They were synthesized by either RAFT polymerization or Siegrist polycondensation. For the second block, an active ester was grafted on and subsequently reacted with the anchor molecules in a polymer analogue reaction. The resulting block copolymers had different properties; poly(para-phenylene vinylene) showed self-assembly in organic solvents, which resulted in gelling of the solution. The fibers from a diluted solution were visible through microscopy. When polymer chains were attached to TiO2 nanorods, the hybrids could be integrated into polymer fibers. A light-induced charge separation was demonstrated through KPFM. The polymer charged positively and the charge could travel along the fibers for several hundred nanometers. Polymers made via RAFT polymerization were based on poly(vinyltriphenylamine). Ruthenium chromophores which carried anchor groups were attached to the second block. These novel block copolymers were then attached to ZnO nanorods. A light-induced charge separation was also demonstrated in this system. The ability to disperse inorganic nanoparticles within the film is another advantage of these block copolymers. This was shown with the example of CdSe tetrapods. Poly(vinyltriphenylamine dimer) with disulfide anchor groups was attached to CdSe tetrapods. These four-armed nanoparticles are supposed to show very high charge transport. A polymer without anchor groups was also mixed with the tetrapods in order to investigate the influence of the anchor groups. It was shown that without them no good films were formed and the tetrapods aggregated heavily in the samples. Additionally, a large difference in the film qualities and the aggregation of the tetrapods was found in the sample of the polymer with anchor groups, dependent on the tetrapod arm length and the polymer loading. These systems are very interesting for hybrid solar cells. This work also illustrates similar systems with quantum dots. The influence of the energy level of the polymer on the hole transport from the polymer to the quantum dots, as well as on the efficiency of QLEDs was studied. For this purpose two different polymers were synthesized with different HOMO levels. It was clearly shown that the polymer with the adjusted lower HOMO level had a better hole injection to the quantum dots, which resulted in more efficient light emitting diodes.rnThese systems all have in common the fact that novel, and specially designed polymers, were attached to inorganic nanocrystals. All of these hybrid materials show fascinating properties, and are helpful in the research of new materials for optoelectronic applications.
Resumo:
The aim of this study was to assess the potential of monoenergetic computed tomography (CT) images to reduce beam hardening artifacts in comparison to standard CT images of dental restoration on dental post-mortem CT (PMCT). Thirty human decedents (15 male, 58 ± 22 years) with dental restorations were examined using standard single-energy CT (SECT) and dual-energy CT (DECT). DECT data were used to generate monoenergetic CT images, reflecting the X-ray attenuation at energy levels of 64, 69, 88 keV, and at an individually adjusted optimal energy level called OPTkeV. Artifact reduction and image quality of SECT and monoenergetic CT were assessed objectively and subjectively by two blinded readers. Subjectively, beam artifacts decreased visibly in 28/30 cases after monoenergetic CT reconstruction. Inter- and intra-reader agreement was good (k = 0.72, and k = 0.73 respectively). Beam hardening artifacts decreased significantly with increasing monoenergies (repeated-measures ANOVA p < 0.001). Artifact reduction was greatest on monoenergetic CT images at OPTkeV. Mean OPTkeV was 108 ± 17 keV. OPTkeV yielded the lowest difference between CT numbers of streak artifacts and reference tissues (-163 HU). Monoenergetic CT reconstructions significantly reduce beam hardening artifacts from dental restorations and improve image quality of post-mortem dental CT.