987 resultados para Dual-Core
Resumo:
A Remote Sensing Core Curriculum (RSCC) development project is currently underway. This project is being conducted under the auspices of the National Center for Geographic Information and Analysis (NCGIA). RSCC is an outgrowth of the NCGIA GIS Core Curriculum project. It grew out of discussions begun at NCGIA, Initiative 12 (I-12): 'Integration of Remote Sensing and Geographic Information Systems'. This curriculum development project focuses on providing professors, teachers and instructors in undergraduate and graduate institutions with course materials from experts in specific subject matter for areas use in the class room.
Resumo:
The Remote Sensing Core Curriculum (RSCC) was initiated in 1993 to meet the demands for a college-level set of resources to enhance the quality of education across national and international campuses. The American Society of Photogrammetry and Remote Sensing adopted the RSCC in 1996 to sustain support of this educational initiative for its membership and collegiate community. A series of volumes, containing lectures, exercises, and data, is being created by expert contributors to address the different technical fields of remote sensing. The RSCC program is designed to operate on the Internet taking full advantage of the World Wide Web (WWW) technology for distance learning. The issues of curriculum development related to the educational setting, with demands on faculty, students, and facilities, is considered to understand the new paradigms for WWW-influenced computer-aided learning. The WWW is shown to be especially appropriate for facilitating remote sensing education with requirements for addressing image data sets and multimedia learning tools. The RSCC is located at http://www.umbc.edu/rscc. The Remote Sensing Core Curriculum (RSCC) was initiated in 1993 to meet the demands for a college-level set of resources to enhance the quality of education across national and international campuses. The American Society of Photogrammetry and Remote Sensing adopted the RSCC in 1996 to sustain support of this educational initiative for its membership and collegiate community. A series of volumes, containing lectures, exercises, and data, is being created by expert contributors to address the different technical fields of remote sensing. The RSCC program is designed to operate on the Internet taking full advantage of the World Wide Web (WWW) technology for distance learning. The issues of curriculum development related to the educational setting, with demands on faculty, students, and facilities, is considered to understand the new paradigms for WWW-influenced computer-aided learning. The WWW is shown to be especially appropriate for facilitating remote sensing education with requirements for addressing image data sets and multimedia learning tools. The RSCC is located at http://www.umbc.edu/rscc.
Resumo:
A variety of sustainable development research efforts and related activities are attempting to reconcile the issues of conserving our natural resources without limiting economic motivation while also improving our social equity and quality of life. Land use/land cover change, occurring on a global scale, is an aggregate of local land use decisions and profoundly impacts our environment. It is therefore the local decision making process that should be the eventual target of many of the ongoing data collection and research efforts which strive toward supporting a sustainable future. Satellite imagery data is a primary source of data upon which to build a core data set for use by researchers in analyzing this global change. A process is necessary to link global change research, utilizing satellite imagery, to the local land use decision making process. One example of this is the NASA-sponsored Regional Data Center (RDC) prototype. The RDC approach is an attempt to integrate science and technology at the community level. The anticipated result of this complex interaction between research and the decision making communities will be realized in the form of long-term benefits to the public.
Resumo:
Consensus was developed by the remote sensing community during the 1980s and early 1990s regarding the need for an organized approach to teaching remote sensing fundamentals for collegiate institutions. Growth of the remote sensing industry might be seriously hampered without concerted efforts to bolster the capacity to teach state-of-the-practice remote sensing theory and practice to the next generation of professionals. A concerted effort of educators, researchers, government, and industry began in 1992 to meet these demands leading to the creation of the Remote Sensing Core Curriculum. The RSCC is currently sustained by cooperative efforts of the ASPRS, ICRSE, NASA, NCGIA, and others in the remote sensing community. Growth of the RSCC into the K-12 community resulted from its Internet teaching foundation that enables comprehensive and response reference links to the whole of the education community.
Resumo:
The previous chapters gave an insightful introduction into the various facets of Business Process Management. We now share a rich understanding of the essential ideas behind designing and managing processes for organizational purposes. We have also learned about the various streams of research and development that have influenced contemporary BPM. As a matter of fact, BPM has become a holistic management discipline. As such, it requires that a plethora of facets needs to be addressed for its successful und sustainable application. This chapter provides a framework that consolidates and structures the essential factors that constitute BPM as a whole. Drawing from research in the field of maturity models, we suggest six core elements of BPM: strategic alignment, governance, methods, information technology, people, and culture. These six elements serve as the structure for this BPM Handbook.
Resumo:
Preserving the integrity of the skin's outermost layer (the epidermis) is vital for humans to thrive in hostile surroundings. Covering the entire body, the epidermis forms a thin but impenetrable cellular cordon that repels external assaults and blocks escape of water and electrolytes from within. This structure exists in a perpetual state of regeneration where the production of new cellular subunits at the base of the epidermis is offset by the release of terminally differentiated corneocytes from the surface. It is becoming increasingly clear that proteases hold vital roles in assembling and maintaining the epidermal barrier. More than 30 proteases are expressed by keratinocytes or infiltrating immune cells and the activity of each must be maintained within narrow limits and confined to the correct time and place. Accordingly, over- or under-exertion of proteolytic activity is a common factor in a multitude of skin disorders that range in severity from relatively mild to life-threatening. This review explores the current state of knowledge on the involvement of proteases in skin diseases and the latest findings from proteomic and transcriptomic studies focused on uncovering novel (patho)physiological roles for these enzymes.
Resumo:
We identify relation completion (RC) as one recurring problem that is central to the success of novel big data applications such as Entity Reconstruction and Data Enrichment. Given a semantic relation, RC attempts at linking entity pairs between two entity lists under the relation. To accomplish the RC goals, we propose to formulate search queries for each query entity α based on some auxiliary information, so that to detect its target entity β from the set of retrieved documents. For instance, a pattern-based method (PaRE) uses extracted patterns as the auxiliary information in formulating search queries. However, high-quality patterns may decrease the probability of finding suitable target entities. As an alternative, we propose CoRE method that uses context terms learned surrounding the expression of a relation as the auxiliary information in formulating queries. The experimental results based on several real-world web data collections demonstrate that CoRE reaches a much higher accuracy than PaRE for the purpose of RC.
Resumo:
While several randomised control trials (RCTs) have evaluated the use of fractional exhaled nitric oxide (FeNO) to improve asthma outcomes, none used FeNO cut-offs adjusted for atopy, a determinant of FeNO levels. In a dual centre RCT, we assessed whether a treatment strategy based on FeNO levels, adjusted for atopy, reduces asthma exacerbations compared with the symptoms-based management (controls). Children with asthma from hospital clinics of two hospitals were randomly allocated to receive an a-priori determined treatment hierarchy based on symptoms or FeNO levels. There was a 2-week run-in period and they were then reviewed ten times over 12-months. The primary outcome was the number of children with exacerbations over 12-months. Sixty-three children were randomised (FeNO=31, controls=32); 55 (86%) completed the study. Although we did achieve our planned sample size, significantly fewer children in the FeNO group (6 of 27) had an asthma exacerbation compared to controls (15 of 28), p=0.021; number to treat for benefit=4 (95%CI 3-24). There was no difference between groups for any secondary outcomes (quality of life, symptoms, FEV1). The final daily inhaled corticosteroids (ICS) dose was significantly (p=0.037) higher in the FeNO group (median 400µg, IQR 250-600) compared to the controls (200, IQR100-400). Taking atopy into account when using FeNO to tailor asthma medications is likely beneficial in reducing the number of children with severe exacerbations at the expense of increased ICS use. However, the strategy is unlikely beneficial for improving asthma control. A larger study is required to confirm or refute our findings.
Resumo:
ORIGO Stepping Stones is written and developed by a team of experts to provide teachers with a world-class elementary math program. Our expert team of authors and consultants are utilizing all available educational research to create a unique program that has never before been available to teachers. The full color Student Practice Book provides practice pages that support previous and current lessons.
Resumo:
Interfacing converters used in connecting energy storage systems like supercapacitors and battery banks to wind power systems introduce additional cost and power losses. This paper therefore presents a direct integration scheme for supercapacitors used in mitigating short-term power fluctuations in wind power systems. This scheme uses a dual inverter topology for both grid connection and interfacing a supercapacitor bank. The main inverter of the dual inverter system is powered by the rectified output of a wind turbine-coupled permanent-magnet synchronous generator. The auxiliary inverter is directly connected to the supercapacitor bank. With this approach, an interfacing converter is not required, and there are no associated costs and power losses incurred. The operation of the proposed system is discussed in detail. Simulation and experimental results are presented to verify the efficacy of the proposed system in suppressing short-term wind power fluctuations.
Resumo:
This paper presents the modeling and motion-sensorless direct torque and flux control of a novel dual-airgap axial-flux permanent-magnet machine optimized for use in flywheel energy storage system (FESS) applications. Independent closed-loop torque and stator flux regulation are performed in the stator flux ( x-y) reference frame via two PI controllers. This facilitates fast torque dynamics, which is critical as far as energy charging/discharging in the FESS is concerned. As FESS applications demand high-speed operation, a new field-weakening algorithm is proposed in this paper. Flux weakening is achieved autonomously once the y-axis voltage exceeds the available inverter voltage. An inherently speed sensorless stator flux observer immune to stator resistance variations and dc-offset effects is also proposed for accurate flux and speed estimation. The proposed observer eliminates the rotary encoder, which in turn reduces the overall weight and cost of the system while improving its reliability. The effectiveness of the proposed control scheme has been verified by simulations and experiments on a machine prototype.
Resumo:
This paper presents the modeling and position-sensorless vector control of a dual-airgap axial flux permanent magnet (AFPM) machine optimized for use in flywheel energy storage system (FESS) applications. The proposed AFPM machine has two sets of three-phase stator windings but requires only a single power converter to control both the electromagnetic torque and the axial levitation force. The proper controllability of the latter is crucial as it can be utilized to minimize the vertical bearing stress to improve the efficiency of the FESS. The method for controlling both the speed and axial displacement of the machine is discussed. An inherent speed sensorless observer is also proposed for speed estimation. The proposed observer eliminates the rotary encoder, which in turn reduces the overall weight and cost of the system while improving its reliability. The effectiveness of the proposed control scheme has been verified by simulations and experiments on a prototype machine.
Resumo:
The morphology of plasmonic nano-assemblies has a direct influence on optical properties, such as localised surface plasmon resonance (LSPR) and surface enhanced Raman scattering (SERS) intensity. Assemblies with core-satellite morphologies are of particular interest, because this morphology has a high density of hot-spots, while constraining the overall size. Herein, a simple method is reported for the self-assembly of gold NPs nano-assemblies with a core-satellite morphology, which was mediated by hyperbranched polymer (HBP) linkers. The HBP linkers have repeat units that do not interact strongly with gold NPs, but have multiple end-groups that specifically interact with the gold NPs and act as anchoring points resulting in nano-assemblies with a large (~48 nm) core surrounded by smaller (~15 nm) satellites. It was possible to control the number of satellites in an assembly which allowed optical parameters such as SPR maxima and the SERS intensity to be tuned. These results were found to be consistent with finite-difference time domain (FDTD) simulations. Furthermore, the multiplexing of the nano-assemblies with a series of Raman tag molecules was demonstrated, without an observable signal arising from the HBP linker after tagging. Such plasmonic nano-assemblies could potentially serve as efficient SERS based diagnostics or biomedical imaging agents in nanomedicine.
Resumo:
Community-based protests against major construction and engineering projects are becoming increasingly common as concerns over issues such as corporate social accountability, climate change and corruption become more prominent in the public's mind. Public perceptions of risk associated with these projects can have a contagious effect, which mismanaged can escalate into long-term and sometimes acrimonious protest stand-offs that have negative implications for the community, firms involved and the construction industry as a whole. This paper investigates the role of core group members in sustaining community-based protest against construction and engineering projects. Using a thematic story telling approach which draws on ethnographic method and social contagion theories, it presents an in-depth analysis of a single case study - one of Australia's longest standing community protests against a construction project. It concludes that core group members play a critical role, within anarchic structures which provide a high degree of spontaneity and improvisation, in sustaining movement continuity by building collective identity, mobilising resources and a moving interface which developers find hard to communicate with.
Resumo:
Palladium is sputtered on multi-walled carbon nanotube forests to form carbon-metal core-shell nanowire arrays. These hybrid nanostructures exhibited resistive responses when exposed to hydrogen with an excellent baseline recovery at room temperature. The magnitude of the response is shown to be tuneable by an applied voltage. Unlike the charge-transfer mechanism commonly attributed to Pd nanoparticle-decorated carbon nanotubes, this demonstrates that the hydrogen response mechanism of the multi-walled carbon nanotube-Pd core-shell nanostructure is due to the increase in electron scattering induced by physisorption of hydrogen. These hybrid core-shell nanostructures are promising for gas detection in hydrogen storage applications.