977 resultados para Docker,ARM,Raspberry PI,single board computer,QEMU,Sabayon Linux,Gentoo Linux
Resumo:
Proteins are specialized molecules that catalyze most of the reactions that can sustain life, and they become functional by folding into a specific 3D structure. Despite their importance, the question, "how do proteins fold?" - first pondered in in the 1930's - is still listed as one of the top unanswered scientific questions as of 2005, according to the journal Science. Answering this question would provide a foundation for understanding protein function and would enable improved drug targeting, efficient biofuel production, and stronger biomaterials. Much of what we currently know about protein folding comes from studies on small, single-domain proteins, which may be quite different from the folding of large, multidomain proteins that predominate the proteomes of all organisms.
In this thesis I will discuss my work to fill this gap in understanding by studying the unfolding and refolding of large, multidomain proteins using the powerful combination of single-molecule force-spectroscopy experiments and molecular dynamic simulations.
The three model proteins studied - Luciferase, Protein S, and Streptavidin - lend insight into the inter-domain dependence for unfolding and the subdomain stabilization of binding ligands, and ultimately provide new insight into atomistic details of the intermediate states along the folding pathway.
Resumo:
BACKGROUND: In the previously reported ALSYMPCA trial in patients with castration-resistant prostate cancer and symptomatic bone metastases, overall survival was significantly longer in patients treated with radium-223 dichloride (radium-223) than in patients treated with placebo. In this study, we investigated safety and overall survival in radium-223 treated patients in an early access programme done after the ALSYMPCA study and before regulatory approval of radium-223.
METHODS: We did an international, prospective, interventional, open-label, single-arm, phase 3b study. Enrolled patients were aged 18 years or older with histologically or cytologically confirmed progressive bone-predominant metastatic castration-resistant prostate cancer with two or more skeletal metastases on imaging (with no restriction as to whether they were symptomatic or asymptomatic; without visceral disease but lymph node metastases were allowed). Patients received intravenous injections of radium-223, 50 kBq/kg (current recommendation 55 kBq/kg after implementation of National Institute of Standards and Technology update on April 18, 2016) every 4 weeks for up to six injections. Other concomitant anticancer therapies were allowed. Primary endpoints were safety and overall survival. The safety and efficacy analyses were done on all patients who received at least one dose of the study drug. The study has been completed, and we report the final analysis here. This study is registered with ClinicalTrials.gov, number NCT01618370, and the European Union Clinical Trials Register, EudraCT number 2012-000075-16.
FINDINGS: Between July 22, 2012, and Dec 19, 2013, 839 patients were enrolled from 113 sites in 14 countries. 696 patients received one or more doses of radium-223; 403 (58%) of these patients had all six planned injections. Any-grade treatment-emergent adverse events occurred in 523 (75%) of 696 patients; any-grade treatment-emergent adverse events deemed to be related to treatment were reported in 281 (40%) patients. The most common grade 3 or worse treatment-related treatment-emergent adverse events were anaemia in 32 (5%) patients, thrombocytopenia in 15 (2%) patients, neutropenia in ten (1%) patients, and leucopenia in nine (1%) patients. Any grade of serious adverse events were reported in 243 (35%) patients. Median follow-up was 7·5 months (IQR 5-11) and 210 deaths were reported; median overall survival was 16 months (95% CI 13-not available [NA]). In an exploratory analysis of overall survival with predefined factors, median overall survival was longer for: patients with baseline alkaline phosphatase concentration less than the upper limit of normal (ULN; median NA, 95% CI 16 months-NA) than for patients with an alkaline phosphatase concentration equal to or greater than the ULN (median 12 months, 11-15); patients with baseline haemoglobin levels 10 g/dL or greater (median 17 months, 14-NA) than for patients with haemoglobin levels less than 10 g/dL (median 10 months, 8-14); patients with a baseline Eastern Cooperative Oncology Group performance status (ECOG PS) of 0 (median NA, 17 months-NA) than for patients with an ECOG PS of 1 (median 13 months, 11-NA) or an ECOG PS of 2 or more (median 7 months, 5-11); and for patients with no reported baseline pain (median NA, 16 months-NA) than for those with mild pain (median 14 months, 13-NA) or moderate-severe pain (median 11 months, 9-13). Median overall survival was also longer in patients who received radium-223 plus abiraterone, enzalutamide, or both (median NA, 95% CI 16 months-NA) than in those who did not receive these agents (median 13 months, 12-16), and in patients who received radium-223 plus denosumab (median NA, 15 months-NA) than in patients who received radium-223 without denosumab (median 13 months, 12-NA).
INTERPRETATION: Our findings show that radium-223 can be safely combined with abiraterone or enzalutamide, which are now both part of the standard of care for patients with metastatic castration-resistant prostate cancer. Furthermore, our findings extend to patients who were asymptomatic at baseline, unlike those enrolled in the pivotal ALSYMPCA study. The findings of prolonged survival in patients treated with concomitant abiraterone, enzalutamide, or denosumab require confirmation in prospective randomised trials.
FUNDING: Pharmaceutical Division of Bayer.
Resumo:
Many-core systems are emerging from the need of more computational power and power efficiency. However there are many issues which still revolve around the many-core systems. These systems need specialized software before they can be fully utilized and the hardware itself may differ from the conventional computational systems. To gain efficiency from many-core system, programs need to be parallelized. In many-core systems the cores are small and less powerful than cores used in traditional computing, so running a conventional program is not an efficient option. Also in Network-on-Chip based processors the network might get congested and the cores might work at different speeds. In this thesis is, a dynamic load balancing method is proposed and tested on Intel 48-core Single-Chip Cloud Computer by parallelizing a fault simulator. The maximum speedup is difficult to obtain due to severe bottlenecks in the system. In order to exploit all the available parallelism of the Single-Chip Cloud Computer, a runtime approach capable of dynamically balancing the load during the fault simulation process is used. The proposed dynamic fault simulation approach on the Single-Chip Cloud Computer shows up to 45X speedup compared to a serial fault simulation approach. Many-core systems can draw enormous amounts of power, and if this power is not controlled properly, the system might get damaged. One way to manage power is to set power budget for the system. But if this power is drawn by just few cores of the many, these few cores get extremely hot and might get damaged. Due to increase in power density multiple thermal sensors are deployed on the chip area to provide realtime temperature feedback for thermal management techniques. Thermal sensor accuracy is extremely prone to intra-die process variation and aging phenomena. These factors lead to a situation where thermal sensor values drift from the nominal values. This necessitates efficient calibration techniques to be applied before the sensor values are used. In addition, in modern many-core systems cores have support for dynamic voltage and frequency scaling. Thermal sensors located on cores are sensitive to the core's current voltage level, meaning that dedicated calibration is needed for each voltage level. In this thesis a general-purpose software-based auto-calibration approach is also proposed for thermal sensors to calibrate thermal sensors on different range of voltages.
Resumo:
Small cell lung cancer (SCLC) is an aggressive neuroendocrine tumor diagnosed at extended disease SCLC (ES-SCLC) stage in about 70% of cases. The new standard of treatment for patients with ES-SCLC is a combination of platinum-etoposide chemotherapy and atezolizumab or durvalumab, two programmed cell death ligand 1 (PD-L1) inhibitory monoclonal antibodies (mAb). However, the benefit derived from the addition of PD-L1 inhibitors to chemotherapy in ES-SCLC was limited and restricted to a subset of patients. The vascular endothelial growth factor (VEGF) is the most important pro-angiogenic factor implicated in cancer angiogenesis, which is abundant in SCLC and associated with poor prognosis. Antiangiogenic agents, such as bevacizumab, a humanized mAb against VEGF, added to platinum-etoposide chemotherapy improved progression-free survival in SCLC in two trials, but it did not translate into a benefit in overall survival. Nevertheless, VEGF has also acts as a mediator of an immunosuppressive microenvironment and its inhibition can revert the immune-suppressive tumor microenvironment and potentially enhance the efficacy of immunotherapies. Based on available preclinical data, we hypothesized that VEGF inhibition by bevacizumab could improve atezolizumab efficacy in a synergistic way and designed a phase II single-arm trial of bevacizumab in combination with carboplatin, etoposide, and atezolizumab as first-line treatment in ES-SCLC. The trial, which is still ongoing, enrolled 53 patients, including those with treated or untreated asymptomatic brain metastases (provided criteria are met), who received atezolizumab, bevacizumab, carboplatin and etoposide for 4-6 cycles (induction phase), followed by maintenance with atezolizumab and bevacizumab for a maximum of 18 total cycles or until disease progression, patient refusal, unacceptable toxicity. The evaluation of efficacy of the experimental combination in terms of 1-year overall survival rate is not yet mature (primary objective of the trial). The combination was feasible and the toxicity profile manageable (secondary objective of the trial).
Resumo:
This Thesis studies the optimal control problem of single-arm and dual-arm serial robots to achieve the time-optimal handling of liquids and objects. The first topic deals with the planning of time-optimal anti-sloshing trajectories of an industrial robot carrying a cylindrical container filled with a liquid, considering 1-dimensional and 2-dimensional planar motions. A technique for the estimation of the sloshing height is presented, together with its extension to 3-dimensional motions. An experimental validation campaign is provided and discussed to assess the thoroughness of such a technique. As far as anti-sloshing trajectories are concerned, 2-dimensional paths are considered and, for each one of them, three constrained optimizations with different values of the sloshing-height thresholds are solved. Experimental results are presented to compare optimized and non-optimized motions. The second part focuses on the time-optimal trajectory planning for dual-arm object handling, employing two collaborative robots (cobots) and adopting an admittance-control strategy. The chosen manipulation approach, known as cooperative grasping, is based on unilateral contact between the cobots and the object, and it may lead to slipping during motion if an internal prestress along the contact-normal direction is not prescribed. Thus, a virtual penetration is considered, aimed at generating the necessary internal prestress. The stability of cooperative grasping is ensured as long as the exerted forces on the object remain inside the static-friction cone. Constrained-optimization problems are solved for 3-dimensional paths: the virtual penetration is chosen among the control inputs of the problem and friction-cone conditions are treated as inequality constraints. Also in this case experiments are presented in order to prove evidence of the firm handling of the object, even for fast motions.
Resumo:
We report precision measurements of the Feynman x (x(F)) dependence, and first measurements of the transverse momentum (p(T)) dependence, of transverse single-spin asymmetries for the production of pi(0) mesons from polarized proton collisions at s=200 GeV. The x(F) dependence of the results is in fair agreement with perturbative QCD model calculations that identify orbital motion of quarks and gluons within the proton as the origin of the spin effects. Results for the p(T) dependence at fixed x(F) are not consistent with these same perturbative QCD-based calculations.
Resumo:
Introduction: The purpose of this study was to compare the electromyography index of muscle coactivation of the following muscle pairs: posterior deltoid and pectoralis major (PD/PM); triceps brachii and biceps brachii (TB/BB); and serratus anterior and upper trapezius (SA/UT) during three different closed kinetic chain exercises (wall-press, bench-press and push-up) on an unstable surface at the maximal load. Methods: A total of 20 healthy sedentary men participated in the study. Integral linear values were obtained from three sustained contractions of six seconds each for the three proposed exercises. Mean coactivation index values were compared using the mixed-effects linear model, with a five percent significance level. Results: Electromyography indexes of muscle coactivation showed significant differences for the PD/PM and TB/BB muscle pairs. No differences were found between exercises for the SA/UT muscle pair. Conclusion: Our results seem to differ from those of previous studies, which reported that the similarity in exercises performed is responsible for the comparable muscle activation levels.
Resumo:
Purpose: The purpose of this work was to evaluate the potential of substituting autogenous bone (AB) by bone marrow aspirate concentrate (BMAC). Both AB and BMAC were tested in combination with a bovine bone mineral (BBM) for their ability of new bone formation (NBF) in a multicentric, randomized, controlled, clinical and histological noninferiority trial. Materials and Methods: Forty-five severely atrophied maxillary sinus from 26 patients were evaluated in a partial cross-over design. As test arm, 34 sinus of 25 patients were augmented with BBM and BMAC containing mesenchymal stem cells. Eleven control sinus from 11 patients were augmented with a mixture of 70% BBM and 30% AB. Biopsies were obtained after a 3-4-month healing period at time of implant placement and histomorphometrically analyzed for NBF. Results: NBF was 14.3%+/- 1.8% for the control and nonsignificantly lower (12.6%+/- 1.7%) for the test (90% confidence interval: -4.6 to 1.2). Values for BBM (31.3%+/- 2.7%) were significantly higher for the test compared with control (19.3%+/- 2.5%) (p < 0.0001). Nonmineralized tissue was lower by 3.3% in the test compared with control (57.6%; p = 0.137). Conclusions: NBF after 3-4 months is equivalent in sinus, augmented with BMAC and BBM or a mixture of AB and BBM. This technique could be an alternative for using autografts to stimulate bone formation.
Resumo:
The mechanism of incoherent pi(0) and eta photoproduction from complex nuclei is investigated from 4 to 12 GeV with an extended version of the multicollisional Monte Carlo (MCMC) intranuclear cascade model. The calculations take into account the elementary photoproduction amplitudes via a Regge model and the nuclear effects of photon shadowing, Pauli blocking, and meson-nucleus final-state interactions. The results for pi(0) photoproduction reproduced for the first time the magnitude and energy dependence of the measured rations sigma(gamma A)/sigma(gamma N) for several nuclei (Be, C, Al, Cu, Ag, and Pb) from a Cornell experiment. The results for eta photoproduction fitted the inelastic background in Cornell's yields remarkably well, which is clearly not isotropic as previously considered in Cornell's analysis. With this constraint for the background, the eta -> gamma gamma. decay width was extracted using the Primakoff method, combining Be and Cu data [Gamma(eta ->gamma gamma) = 0.476(62) keV] and using Be data only [Gamma(eta ->gamma gamma) = 0.512(90) keV]; where the errors are only statistical. These results are in sharp contrast (similar to 50-60%) with the value reported by the Cornell group [Gamma(eta ->gamma gamma). = 0.324(46) keV] and in line with the Particle Data Group average of 0.510(26) keV.
Resumo:
The PHENIX experiment has measured the suppression of semi-inclusive single high-transverse-momentum pi(0)'s in Au+Au collisions at root s(NN) = 200 GeV. The present understanding of this suppression is in terms of energy loss of the parent (fragmenting) parton in a dense color-charge medium. We have performed a quantitative comparison between various parton energy-loss models and our experimental data. The statistical point-to-point uncorrelated as well as correlated systematic uncertainties are taken into account in the comparison. We detail this methodology and the resulting constraint on the model parameters, such as the initial color-charge density dN(g)/dy, the medium transport coefficient <(q) over cap >, or the initial energy-loss parameter epsilon(0). We find that high-transverse-momentum pi(0) suppression in Au+Au collisions has sufficient precision to constrain these model-dependent parameters at the +/- 20-25% (one standard deviation) level. These constraints include only the experimental uncertainties, and further studies are needed to compute the corresponding theoretical uncertainties.
Resumo:
Single interface flow systems (SIFA) present some noteworthy advantages when compared to other flow systems, such as a simpler configuration, a more straightforward operation and control and an undemanding optimisation routine. Moreover, the plain reaction zone establishment, which relies strictly on the mutual inter-dispersion of the adjoining solutions, could be exploited to set up multiple sequential reaction schemes providing supplementary information regarding the species under determination. In this context, strategies for accuracy assessment could be favourably implemented. To this end, the sample could be processed by two quasi-independent analytical methods and the final result would be calculated after considering the two different methods. Intrinsically more precise and accurate results would be then gathered. In order to demonstrate the feasibility of the approach, a SIFA system with spectrophotometric detection was designed for the determination of lansoprazole in pharmaceutical formulations. Two reaction interfaces with two distinct pi-acceptors, chloranilic acid (CIA) and 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) were implemented. Linear working concentration ranges between 2.71 x 10(-4) to 8.12 x 10(-4) mol L(-1) and 2.17 x 10(-4) to 8.12 x 10(-4) mol L(-1) were obtained for DDQ and CIA methods, respectively. When compared with the results furnished by the reference procedure, the results showed relative deviations lower than 2.7%. Furthermore. the repeatability was good, with r.s.d. lower than 3.8% and 4.7% for DDQ and CIA methods, respectively. Determination rate was about 30 h(-1). (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this paper, artificial neural networks are employed in a novel approach to identify harmonic components of single-phase nonlinear load currents, whose amplitude and phase angle are subject to unpredictable changes, even in steady-state. The first six harmonic current components are identified through the variation analysis of waveform characteristics. The effectiveness of this method is tested by applying it to the model of a single-phase active power filter, dedicated to the selective compensation of harmonic current drained by an AC controller. Simulation and experimental results are presented to validate the proposed approach. (C) 2010 Elsevier B. V. All rights reserved.
Resumo:
The single phase induction motors needs two stator windings to produce rotating magnetic field : one main winding and the other auxiliary winding. The aim of the auxiliary winding is to create the rotating electromagnetic field when the machine is started-up and is afterwards turned off, generally through the centrifugal switch coupled together with the shaft of the machine rotor. The main purpose of this document is to evaluate the influence that the two windings have on the external characteristics of the single phase induction motor. For this purpose, two different kinds of windings were carried out and simulated, with the proposal to obtain some benefits. The main winding and the auxiliary winding were prepared and mounted on a prototype. The simulation was done via software based FEM, to make the extraction and results analysis possible. This results are shown at the end this document.
Resumo:
This paper compares the behaviour of two different control structures of automatic voltage regulators of synchronous machines equipped with static excitation systems. These systems have a fully controlled thyristor bridge that supplies DC current to the rotor winding. The rectifier bridge is fed by the stator terminals through a step-down transformer. The first control structure, named ""Direct Control"", has a single proportional-integral (PI) regulator that compares stator voltage setpoint with measured voltage and acts directly on the thyristor bridge`s firing angle. This control structure is usually employed in commercial excitation systems for hydrogenerators. The second structure, named ""Cascade Control"", was inspired on control loops of commercial DC motor drives. Such drives employ two PIs in a cascade arrangement, the external PI deals with the motor speed while the internal one regulates the armature current. In the adaptation proposed, the external PI compares setpoint with the actual stator voltage and produces the setpoint to the internal PI-loop which controls the field current.
Resumo:
The XSophe-Sophe-XeprView((R)) computer simulation software suite enables scientists to easily determine spin Hamiltonian parameters from isotropic, randomly oriented and single crystal continuous wave electron paramagnetic resonance (CW EPR) spectra from radicals and isolated paramagnetic metal ion centers or clusters found in metalloproteins, chemical systems and materials science. XSophe provides an X-windows graphical user interface to the Sophe programme and allows: creation of multiple input files, local and remote execution of Sophe, the display of sophelog (output from Sophe) and input parameters/files. Sophe is a sophisticated computer simulation software programme employing a number of innovative technologies including; the Sydney OPera HousE (SOPHE) partition and interpolation schemes, a field segmentation algorithm, the mosaic misorientation linewidth model, parallelization and spectral optimisation. In conjunction with the SOPHE partition scheme and the field segmentation algorithm, the SOPHE interpolation scheme and the mosaic misorientation linewidth model greatly increase the speed of simulations for most spin systems. Employing brute force matrix diagonalization in the simulation of an EPR spectrum from a high spin Cr(III) complex with the spin Hamiltonian parameters g(e) = 2.00, D = 0.10 cm(-1), E/D = 0.25, A(x) = 120.0, A(y) = 120.0, A(z) = 240.0 x 10(-4) cm(-1) requires a SOPHE grid size of N = 400 (to produce a good signal to noise ratio) and takes 229.47 s. In contrast the use of either the SOPHE interpolation scheme or the mosaic misorientation linewidth model requires a SOPHE grid size of only N = 18 and takes 44.08 and 0.79 s, respectively. Results from Sophe are transferred via the Common Object Request Broker Architecture (CORBA) to XSophe and subsequently to XeprView((R)) where the simulated CW EPR spectra (1D and 2D) can be compared to the experimental spectra. Energy level diagrams, transition roadmaps and transition surfaces aid the interpretation of complicated randomly oriented CW EPR spectra and can be viewed with a web browser and an OpenInventor scene graph viewer.