948 resultados para Disulfide Bond Isomerization
Resumo:
This paper describes a generic method for the site-specific attachment of lathanide complexes to proteins through a disulfide bond. The method is demonstrated by the attachment of a lanthanide-binding peptide tag to the single cysteine residue present in the N-terminal DNA-binding domain of the Echerichia coli arginine repressor. Complexes with Y3+, Tb3+, Dy3+, Ho3+, Er3+, Tm3+ and Yb3+ ions were formed and analysed by NMR spectroscopy. Large pseudocontact shifts and residual dipolar couplings were induced by the lanthanide-binding tag in the protein NMR spectrum, a result indicating that the tag was rigidly attached to the protein. The axial components of the magnetic susceptibility anisostropy tensors determined for the different lanthanide ions were similarly but not identically oriented. A single tag with a single protein attachment site can provide different pseudocontact shifts from different magnetic susceptibility tensors and thus provide valuable nondegenerate long-range structure information in the determination of 3D protein structures by NMR spectroscopy.
Resumo:
SFTI-1 is a small cyclic peptide from sunflower seeds that is one of the most potent trypsin inhibitors of any naturally occurring peptide and is related to the Bowman-Birk family of inhibitors (BBIs). BBIs are involved in the defense mechanisms of plants and also have potential as cancer chemopreventive agents. At only 14 amino acids in size, SFTI-1 is thought to be a highly optimized scaffold of the BBI active site region, and thus it is of interest to examine its important structural and functional features. In this study, a suite of 12 alanine mutants of SFTI-1 has been synthesized, and their structures and activities have been determined. SFTI-1 incorporates a binding loop that is clasped together with a disulfide bond and a secondary peptide loop making up the circular backbone. We show here that the secondary loop stabilizes the binding loop to the consequences of sequence variations. In particular, full-length BBIs have a conserved cis-proline that has been shown previously to be required for well defined structure and potent activity, but we show here that the SFTI-1 scaffold can accommodate mutation of this residue and still have a well defined native-like conformation and nanomolar activity in inhibiting trypsin. Among the Ala mutants, the most significant structural perturbation occurred when Asp(14) was mutated, and it appears that this residue is important in stabilizing the trans peptide bond preceding Pro(13) and is thus a key residue in maintaining the highly constrained structure of SFTI-1. This aspartic acid residue is thought to be involved in the cyclization mechanism associated with excision of SFTI-1 from its 58-amino acid precursor. Overall, this mutational analysis of SFTI-1 clearly defines the optimized nature of the SFTI-1 scaffold and demonstrates the importance of the secondary loop in maintaining the active conformation of the binding loop.
Resumo:
Disulfide bonds are important structural motifs that play an essential role in maintaining the conformational stability of many bioactive peptides. Of particular importance are the conotoxins, which selectively target a wide range of ion channels that are implicated in numerous disease states. Despite the enormous potential of conotoxins as therapeutics, their multiple disulfide bond frameworks are inherently unstable under reducing conditions. Reduction or scrambling by thiol-containing molecules such as glutathione or serum albumin in intracellular or extracellular environments such as blood plasma can decrease their effectiveness as drugs. To address this issue, we describe a new class of selenoconotoxins where cysteine residues are replaced by selenocysteine to form isosteric and non-reducible diselenide bonds. Three isoforms of alpha-conotoxin ImI were synthesized by t-butoxycarbonyl chemistry with systematic replacement of one([ Sec(2,8)] ImI or [Sec(3,12)] ImI), or both([Sec(2,3,8,12)] ImI) disulfide bonds with a diselenide bond. Each analogue demonstrated remarkable stability to reduction or scrambling under a range of chemical and biological reducing conditions. Three-dimensional structural characterization by NMR and CD spectroscopy indicates conformational preferences that are very similar to those of native ImI, suggesting fully isomorphic structures. Additionally, full bioactivity was retained at the alpha(7) nicotinic acetylcholine receptor, with each seleno-analogue exhibiting a dose-response curve that overlaps with wild-type ImI, thus further supporting an isomorphic structure. These results demonstrate that selenoconotoxins can be used as highly stable scaffolds for the design of new drugs.
Resumo:
Receptor activity modifying proteins (RAMPs) are a family of single-pass transmembrane proteins that dimerize with G-protein-coupled receptors. They may alter the ligand recognition properties of the receptors (particularly for the calcitonin receptor-like receptor, CLR). Very little structural information is available about RAMPs. Here, an ab initio model has been generated for the extracellular domain of RAMP1. The disulfide bond arrangement (Cys 27-Cys82, Cys40-Cys72, and Cys 57-Cys104) was determined by site-directed mutagenesis. The secondary structure (a-helices from residues 29-51, 60-80, and 87-100) was established from a consensus of predictive routines. Using these constraints, an assemblage of 25,000 structures was constructed and these were ranked using an all-atom statistical potential. The best 1000 conformations were energy minimized. The lowest scoring model was refined by molecular dynamics simulation. To validate our strategy, the same methods were applied to three proteins of known structure; PDB:1HP8, PDB:1V54 chain H (residues 21-85), and PDB:1T0P. When compared to the crystal structures, the models had root mean-square deviations of 3.8 Å, 4.1 Å, and 4.0 Å, respectively. The model of RAMP1 suggested that Phe93, Tyr 100, and Phe101 form a binding interface for CLR, whereas Trp74 and Phe92 may interact with ligands that bind to the CLR/RAMP1 heterodimer. © 2006 by the Biophysical Society.
Resumo:
Adrenomedullin (AM) has two specific receptors formed by the calcitonin-receptor-like receptor (CL) and receptor activity-modifying protein (RAMP) 2 or 3. These are known as AM1 and AM2 receptors, respectively. In addition, AM has appreciable affinity for the CGRP1 receptor, composed of CL and RAMP1. The AM1 receptor has a high degree of selectivity for AM over CGRP and other peptides, and AM 22-52 is an effective antagonist at this receptor. By contrast, the AM2 receptor shows less specificity for AM, having appreciable affinity for βCGRP. Here, CGRP8-37 is either equipotent or more effective as an antagonist than AM22-52, depending on the species from which the receptor components are derived. Thus, under the appropriate circumstances it seems that βCGRP might be able to activate both CGRP 1 and AM2 receptors and AM could activate both AM 1 and AM2 receptors as well as CGRP1 receptors. Current peptide antagonists are not sufficiently selective to discriminate between these three receptors. The CGRP-selectivity of RAMP1 and RAMP3 may be conferred by a putative disulfide bond from the N-terminus to the middle of the extracellular domain of these molecules. This is not present in RAMP2. Copyright © 2004 Humana Press Inc. All rights of any nature whatsoever reserved.
Resumo:
The calcitonin receptor-like receptor (CLR) acts as a receptor for the calcitonin gene-related peptide (CGRP) but in order to recognize CGRP, it must form a complex with an accessory protein, receptor activity modifying protein 1 (RAMP1). Identifying the protein/protein and protein/ligand interfaces in this unusual complex would aid drug design. The role of the extreme N-terminus of CLR (Glu23-Ala60) was examined by an alanine scan and the results were interpreted with the help of a molecular model. The potency of CGRP at stimulating cAMP production was reduced at Leu41Ala, Gln45Ala, Cys48Ala and Tyr49Ala; furthermore, CGRP-induced receptor internalization at all of these receptors was also impaired. Ile32Ala, Gly35Ala and Thr37Ala all increased CGRP potency. CGRP specific binding was abolished at Leu41Ala, Ala44Leu, Cys48Ala and Tyr49Ala. There was significant impairment of cell surface expression of Gln45Ala, Cys48Ala and Tyr49Ala. Cys48 takes part in a highly conserved disulfide bond and is probably needed for correct folding of CLR. The model suggests that Gln45 and Tyr49 mediate their effects by interacting with RAMP1 whereas Leu41 and Ala44 are likely to be involved in binding CGRP. Ile32, Gly35 and Thr37 form a separate cluster of residues which modulate CGRP binding. The results from this study may be applicable to other family B GPCRs which can associate with RAMPs.
Resumo:
The kainoids are a class of non-proteinogenic pyrrolidine dicarboxylates that exhibit both excitatory and excitotoxic activities. These activities are a result of the ability of the kainoids to act as glutamate receptor agonists by activating ionotropic glutamate receptors. The parent of this group of compounds is α-kainic acid. Kainic acid is isolated from the seaweed Diginea simplex and has been used in Asian countries as a treatment for intestinal worms in children. In addition it is used extensively by neuropharmacologists for the study of glutamate receptors. Several years ago, the world's sole supplier of kainic acid discontinued this product. Since that time, other sources have appeared, however, the price of kainic acid remains significantly higher than it once was. We have thus been working on synthesizing aza analogs of kainoids which would be less costly but potentially potent alternatives to kainic acid via the dipolar cycloadditions of diazoalkanes with trans diethyl glutaconate. These 1, 3-dipolar cycloadditions yielded 2-pyrazolines or pyrazoles. The 2-pyrazolines may be precursors to aza analogs of kainoids. The regioselectivity of these 1, 3-dipolar cycloadditions and isomerization of the 1-pyrazolines to 2-pyrazolines was evaluated. Reductions of the 2-pyrazolines yielded aza analogs of kainoids.^ TMS diazomethane, due to the commercial availability, has been frequently used as a synthetic reagent in 1, 3-dipolar cycloadditions, particularly in the preparation of novel amino acid analogs. A survey of the recent literature indicates that the regioselectivity of the double bond isomerization of TMS substituted 1-pyrazolines is variable and at first glance, unpredictable. In an effort to develop a mechanistic rational for the isomerization which could account for the products obtained, a systematic survey of dipolar cycloadditions between TMS diazomethane and α, β-unsaturated dipolarophiles was undertaken. It was suggested that the steric demand of the dipolarophiles had a profound effect on both the relative stereochemistry of dipolar cycloaddition reactions of TMSCHN2 and the preferred direction of isomerization of the resulting 1-pyrazoline.^
Resumo:
Neuroglobin (Ngb) and cytoglobin (Cygb) are two new additions to the globin family, exhibiting heme iron hexa-coordination, a disulfide bond and large internal cavities. These proteins are implicated in cytoprotection under hypoxic-ischemic conditions, but the molecular basis of their cytoprotective function is unclear. Herein, a photothermal and spectroscopic study of the interactions of diatomic ligands with Ngb, Cygb, myoglobin and hemoglobin is presented. The impact of the disulfide bond in Ngb and Cygb and role of conserved residues in Ngb His64, Val68, Cys55, Cys120 and Tyr44 on conformational dynamics associated with ligand binding/dissociation were investigated. Transient absorption and photoacoustic calorimetry studies indicate that CO photo-dissociation from Ngb leads to a volume expansion (13.4±0.9 mL mol-1), whereas a smaller volume change was determined for Ngb with reduced Cys (ΔV=4.6±0.3 mL mol-1). Furthermore, Val68 side chain regulates ligand migration between the distal pocket and internal hydrophobic cavities since Val68Phe geminate quantum yield is ∼2.7 times larger than that of WT Ngb. His64Gln and Tyr44Phe mutations alter the thermodynamic parameters associated with CO photo-release indicating that electrostatic/hydrogen binding network that includes heme propionate groups, Lys 67, His64, and Tyr 44 in Ngb modulates the energetics of CO photo-dissociation. In Cygb, CO escape from the protein matrix is fast (< 40 ns) with a ΔH of 18±2 kcal mol-1 in Cygbred, whereas disulfide bridge formation promotes a biphasic ligand escape associated with an overall enthalpy change of 9±4 kcal mol-1. Therefore, the disulfide bond modulates conformational dynamics in Ngb and Cygb. I propose that in Cygb with reduced Cys the photo-dissociated ligand escapes through the hydrophobic tunnel as occurs in Ngb, whereas the CO preferentially migrates through the His64 gate in Cygbox. To characterize Cygb surface 1,8-ANS interactions with Cygb were investigated employing fluorescence spectroscopy, ITC and docking simulations. Two 1,8-ANS binding sites were identified. One binding site is located close to the extended N-terminus of Cygb and was also identified as a binding site for oleate. Furthermore, guanidinium hydrochloride-induced unfolding studies of Cygb reveal that the disulfide bond does not impact Cygb stability, whereas binding of cyanide slightly increases the protein stability.
Resumo:
Mammalian C3 is a complement protein which consists of an α chain (125kDa) and β chain (75kDa) held together by a disulfide bond. The a chain contains a conserved thiolester site which provides the molecule with opsonic properties. The protein is synthesized as a single pro-C3 molecule which is post-translationally modified. C3 genes have been identified in organisms from different phyla, however, the shark C3 gene remains to be cloned. Sequence data from the shark will contribute to understanding further the evolution of this key protein. To obtain additional sequence data for shark C3 genes a cDNA library was constructed and screened with a DIG-labeled C3 probe. Fifty clones were isolated and sequenced. Analysis identified four sequences that yielded positive alignments with C3 of a variety of organisms including human C3. Deduced amino acid sequence analysis confirmed a β/α cut site (RRRR), the CR3 and properdin binding sites, the catalytic histidine, and the reactive thiolester sequence. In the shark there are at least two C3-like genes as the gene sequence obtained is distinct from that previously described.
Resumo:
The phytopathogenic bacterium Xylella fastidiosa is the etiological agent of various plant diseases. To survive under oxidative stress imposed by the host, microorganisms express antioxidant proteins, including cysteine-based peroxidases named peroxiredoxins. This work is a comprehensive analysis of the catalysis performed by PrxQ from X. fastidiosa (XfPrxQ) that belongs to a peroxiredoxin class still poorly characterized and previously considered as moderately reactive toward hydroperoxides. Contrary to these assumptions, our competitive kinetics studies have shown that the second-order rate constants of the peroxidase reactions of XfPrxQ with hydrogen peroxide and peroxynitrite are in the order of 107 and 106 M(-1) s(-1), respectively, which are as fast as the most efficient peroxidases. The XfPrxQ disulfides were only slightly reducible by dithiothreitol; therefore, the identification of a thioredoxin system as the probable biological reductant of XfPrxQ was a relevant finding. We also showed by site-specific mutagenesis and mass spectrometry that an intramolecular disulfide bond between Cys-47 and Cys-83 is generated during the catalytic cycle. Furthermore, we elucidated the crystal structure of XfPrxQ C47S in which Ser-47 and Cys-83 lie similar to 12.3 angstrom apart. Therefore, significant conformational changes are required for disulfide bond formation. In fact, circular dichroism data indicated that there was a significant redox-dependent unfolding of alpha-helices, which is probably triggered by the peroxidatic cysteine oxidation. Finally, we proposed a model that takes data from this work as well data as from the literature into account.
Resumo:
The major part of this thesis concerns the development of catalytic methodologies based on palladium nanoparticles immobilized on aminopropyl-functionalized siliceous mesocellular foam (Pd0-AmP-MCF). The catalytic activity of the precursor to the nanocatalyst, PdII-AmP-MCF is also covered by this work. In the first part the application of Pd0-AmP-MCF in Suzuki-Miyaura cross-coupling reactions and transfer hydrogenation of alkenes under microwave irradiation is described. Excellent reactivity was observed and a broad range of substrates were tolerated for both transformations. The Pd0-AmP-MCF exhibited high recyclability as well as low metal leaching in both cases. The aim of the second part was to evaluate the catalytic efficiency of the closely related PdII-AmP-MCF for cycloisomerization of various acetylenic acids. The catalyst was able to promote formation of lactones under mild conditions using catalyst loadings of 0.3 - 0.5 mol% at temperatures of up to 50 oC in the presence of Et3N. By adding 1,4-benzoquinone to the reaction, the catalyst could be recycled four times without any observable decrease in the activity. The selective arylation of indoles at the C-2 position using Pd-AmP-MCF and symmetric diaryliodonium salts is presented in the third part. These studies revealed that Pd0-AmP-MCF was more effective than PdII-AmP-MCF for this transformation. Variously substituted indoles as well as diaryliodonium salts were tolerated, giving arylated indoles in high yields within 15 h at 20 - 50 oC in H2O. Only very small amounts of Pd leaching were observed and in this case the catalyst exhibited moderate recyclability. The final part of the thesis describes the selective hydrogenation of the C=C in different α,β-unsaturated systems. The double bond was efficiently hydrogenated in high yields both under batch and continuous-flow conditions. High recyclability and low metal leaching were observed in both cases.
Resumo:
Recent developments in mass spectrometry and chromatography provide new possibilities for the identification and in some instances quantification of a wide range of lipids in complex matrices. These advances in analytical technologies have provided a tantalizing glimpse of the true structural diversity of lipids in nature and have reinvigorated interest in the role of lipids in biology. While technological advances have been impressive, difficulties in the ready identification of sites of unsaturation (i.e., double bond position) within these molecules presents a significant impediment to understanding lipid biochemistry. This is of particular importance given the growing body of literature suggesting that the presence of naturally occurring lipid double bond isomers can have a significant influence, both positive and negative, on the development of pathologies such as cancer, cardiovascular disease and type 2 diabetes. This article provides a critical review of the Current suite of analytical approaches to the challenge of identification of the position of carbon-carbon double bonds in intact lipids. Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.
Synthetic peptide models for the redox-active disulfide loop of glutaredoxin. Conformational studies
Resumo:
Two cyclic peptide disulfides Boc-Cys-Pro-X-Cys-NHMe (X = L-Tyr or L-Phe) have been synthesized as models for the 14-membered redox-active disulfide loop of glutaredoxin. 'H NMR studies at 270 MHz in chloroform solutions establish a type I 0-turn conformation for the Pro-X segment in both peptides, stabilized by a 4-1 hydrogen bond between the Cys(1) CO and Cys(4) NH groups. Nuclear Overhauser effects establish that the aromatic ring in the X = Phe peptide is oriented over the central peptide unit. In dimethyl sulfoxide solutions two conformational species are observed in slow exchange on the NMR time scale, for both peptides. These are assigned to type I and type I1 p-turn structures with -Pro-Tyr(Phe)-as the corner residues. The structural assignments are based on correlation of NMR parameters with model 14-membered cyclic cystine peptides with Pro-X spacers. Circular dichroism studies based on the -S-Sn- u* transition suggest a structural change in the disulfide bridge with changing solvent polarity, establishing conformational coupling between the peptide backbone and the disulfide linkage in these systems.
Resumo:
The reaction of the low valent metallocene(II) sources Cp'Ti-2(eta(2)-Me3SiC2SiMe3) (Cp' = eta(5)-cyclopentadienyl, 1a or eta(5)-pentamethylcyclopentadienyl, 1b) with different carbodiimide substrates RN=C=NR' 2-R-R' (R = t-Bu; R' = Et; R = R' = i-Pr; t-Bu; SiMe3; 2,4,6-Me-C6H2 and 2,6-i-Pr-C6H3) was investigated to explore the frontiers of ring strained, unusual four-membered heterometallacycles 5-R. The product complexes show dismantlement, isomerization, or C-C coupling of the applied carbodiimide substrates, respectively, to form unusual mono-, di-, and tetranuclear titanium(III) complexes. A detailed theoretical study revealed that the formation of the unusual complexes can be attributed to the biradicaloid nature of the unusual four-membered heterometallacycles 5-R, which presents an intriguing situation of M-C bonding. The combined experimental and theoretical study highlights the delicate interplay of electronic and steric effects in the stabilization of strained four-membered heterometallacycles, accounting for the isolation of the obtained complexes.
Resumo:
Conformational diversity or shapeshifting in cyclic peptide natural products can, in principle, confer a single molecular entity with the property of binding to multiple receptors. Conformational equilibria have been probed in the contryphans, which are peptides derived from Conus venom possessing a 23-membered cyclic disulfide moiety. The natural sequences derived from Conus inscriptus, GCV(D)LYPWC* (In936) and Conus loroisii, GCP(D)WDPWC* (Lo959) differ in the number of proline residues within the macrocyclic ring. Structural characterisation of distinct conformational states arising from cis-trans equilibria about Xxx-Pro bonds is reported. Isomerisation about the C2-P3 bond is observed in the case of Lo959 and about the Y5-P6 bond in In936. Evidence is presented for as many as four distinct species in the case of the synthetic analogue V3P In936. The Tyr-Pro-Trp segment in In936 is characterised by distinct sidechain orientations as a consequence of aromatic/proline interactions as evidenced by specific sidechain-sidechain nuclear Overhauser effects and ring current shifted proton chemical shifts. Molecular dynamics simulations suggest that Tyr5 and Trp7 sidechain conformations are correlated and depend on the geometry of the Xxx-Pro bond. Thermodynamic parameters are derived for the cis trans equilibrium for In936. Studies on synthetic analogues provide insights into the role of sequence effects in modulating isomerisation about Xxx-Pro bonds.