890 resultados para Distributed artificial intelligence - multiagent systems
Resumo:
Effective automatic summarization usually requires simulating human reasoning such as abstraction or relevance reasoning. In this paper we describe a solution for this type of reasoning in the particular case of surveillance of the behavior of a dynamic system using sensor data. The paper first presents the approach describing the required type of knowledge with a possible representation. This includes knowledge about the system structure, behavior, interpretation and saliency. Then, the paper shows the inference algorithm to produce a summarization tree based on the exploitation of the physical characteristics of the system. The paper illustrates how the method is used in the context of automatic generation of summaries of behavior in an application for basin surveillance in the presence of river floods.
Resumo:
Federal Highway Administration, Washington, D.C.
Resumo:
Рассмотрены методы спецификации протоколов взаимодействия агентов в мультиагентных системах на языке ПРАЛУ параллельных алгоритмов логического управления, который обладает средствами для представления последовательности состояний диалога, приема и отправки сообщений. Показано, что описание поведения агентов на языке ПРАЛУ позволяет моделировать поведение мультиагентной системы целиком. Предложена методология программирования агентов ПРАЛУ, использующая двухблочную архитектуру: блок синхронизации и функциональный блок. Оригинальной компонентой этой методологии является средство автоматической трансляции блока синхронизации по описанию на ПРАЛУ.
Resumo:
Clustering algorithms, pattern mining techniques and associated quality metrics emerged as reliable methods for modeling learners’ performance, comprehension and interaction in given educational scenarios. The specificity of available data such as missing values, extreme values or outliers, creates a challenge to extract significant user models from an educational perspective. In this paper we introduce a pattern detection mechanism with-in our data analytics tool based on k-means clustering and on SSE, silhouette, Dunn index and Xi-Beni index quality metrics. Experiments performed on a dataset obtained from our online e-learning platform show that the extracted interaction patterns were representative in classifying learners. Furthermore, the performed monitoring activities created a strong basis for generating automatic feedback to learners in terms of their course participation, while relying on their previous performance. In addition, our analysis introduces automatic triggers that highlight learners who will potentially fail the course, enabling tutors to take timely actions.
Resumo:
Rhythm analysis of written texts focuses on literary analysis and it mainly considers poetry. In this paper we investigate the relevance of rhythmic features for categorizing texts in prosaic form pertaining to different genres. Our contribution is threefold. First, we define a set of rhythmic features for written texts. Second, we extract these features from three corpora, of speeches, essays, and newspaper articles. Third, we perform feature selection by means of statistical analyses, and determine a subset of features which efficiently discriminates between the three genres. We find that using as little as eight rhythmic features, documents can be adequately assigned to a given genre with an accuracy of around 80 %, significantly higher than the 33 % baseline which results from random assignment.
Resumo:
Opinion mining and sentiment analysis are important research areas of Natural Language Processing (NLP) tools and have become viable alternatives for automatically extracting the affective information found in texts. Our aim is to build an NLP model to analyze gamers’ sentiments and opinions expressed in a corpus of 9750 game reviews. A Principal Component Analysis using sentiment analysis features explained 51.2 % of the variance of the reviews and provides an integrated view of the major sentiment and topic related dimensions expressed in game reviews. A Discriminant Function Analysis based on the emerging components classified game reviews into positive, neutral and negative ratings with a 55 % accuracy.
Resumo:
The Computing Division of the Business School at University College Worcester provides computing and information technology education to a range of undergraduate students. Topics include various approaches to programming, artificial intelligence, operating systems and digital technologies. Each of these has its own potentially conflicting requirements for a pedagogically sound programming environment. This paper describes an endeavor to develop a common programming paradigm across all topics. This involves the combined use of autonomous robots and Java simulations.
Resumo:
This paper presents a distributed hierarchical multiagent architecture for detecting SQL injection attacks against databases. It uses a novel strategy, which is supported by a Case-Based Reasoning mechanism, which provides to the classifier agents with a great capacity of learning and adaptation to face this type of attack. The architecture combines strategies of intrusion detection systems such as misuse detection and anomaly detection. It has been tested and the results are presented in this paper.
Resumo:
In a multiagent system where norms are used to regulate the actions agents ought to execute, some agents may decide not to abide by the norms if this can benefit them. Norm enforcement mechanisms are designed to counteract these benefits and thus the motives for not abiding by the norms. In this work we propose a distributed mechanism through which agents in the multiagent system that do not abide by the norms can be ostracised by their peers. An ostracised agent cannot interact anymore and looses all benefits from future interactions. We describe a model for multiagent systems structured as networks of agents, and a behavioural model for the agents in such systems. Furthermore, we provide analytical results which show that there exists an upper bound to the number of potential norm violations when all the agents exhibit certain behaviours. We also provide experimental results showing that both stricter enforcement behaviours and larger percentage of agents exhibiting these behaviours reduce the number of norm violations, and that the network topology influences the number of norm violations. These experiments have been executed under varying scenarios with different values for the number of agents, percentage of enforcers, percentage of violators, network topology, and agent behaviours. Finally, we give examples of applications where the enforcement techniques we provide could be used.
Resumo:
FastFlow is a structured parallel programming framework targeting shared memory multi-core architectures. In this paper we introduce a FastFlow extension aimed at supporting also a network of multi-core workstations. The extension supports the execution of FastFlow programs by coordinating-in a structured way-the fine grain parallel activities running on a single workstation. We discuss the design and the implementation of this extension presenting preliminary experimental results validating it on state-of-the-art networked multi-core nodes. © 2013 Springer-Verlag.
Resumo:
We analyze ways by which people decompose into groups in distributed systems. We are interested in systems in which an agent can increase its utility by connecting to other agents, but must also pay a cost that increases with the size of the sys- tem. The right balance is achieved by the right size group of agents. We formulate and analyze three intuitive and realistic games and show how simple changes in the protocol can dras- tically improve the price of anarchy of these games. In partic- ular, we identify two important properties for a low price of anarchy: agreement in joining the system, and the possibil- ity of appealing a rejection from a system. We show that the latter property is especially important if there are some pre- existing constraints regarding who may collaborate (or com- municate) with whom.
Resumo:
This article discusses the development of an Intelligent Distributed Environmental Decision Support System, built upon the association of a Multi-agent Belief Revision System with a Geographical Information System (GIS). The inherent multidisciplinary features of the involved expertises in the field of environmental management, the need to define clear policies that allow the synthesis of divergent perspectives, its systematic application, and the reduction of the costs and time that result from this integration, are the main reasons that motivate the proposal of this project. This paper is organised in two parts: in the first part we present and discuss the developed Distributed Belief Revision Test-bed — DiBeRT; in the second part we analyse its application to the environmental decision support domain, with special emphasis on the interface with a GIS.
Resumo:
Os smart grids representam a nova geração dos sistemas elétricos de potência, combinando avanços em computação, sistemas de comunicação, processos distribuídos e inteligência artificial para prover novas funcionalidades quanto ao acompanhamento em tempo real da demanda e do consumo de energia elétrica, gerenciamento em larga escala de geradores distribuídos, entre outras, a partir de um sistema de controle distribuído sobre a rede elétrica. Esta estrutura modifica profundamente a maneira como se realiza o planejamento e a operação de sistemas elétricos nos dias de hoje, em especial os de distribuição, e há interessantes possibilidades de pesquisa e desenvolvimento possibilitada pela busca da implementação destas funcionalidades. Com esse cenário em vista, o presente trabalho utiliza uma abordagem baseada no uso de sistemas multiagentes para simular esse tipo de sistema de distribuição de energia elétrica, considerando opções de controle distintas. A utilização da tecnologia de sistemas multiagentes para a simulação é baseada na conceituação de smart grids como um sistema distribuído, algo também realizado nesse trabalho. Para validar a proposta, foram simuladas três funcionalidades esperadas dessas redes elétricas: classificação de cargas não-lineares; gerenciamento de perfil de tensão; e reconfiguração topológica com a finalidade de reduzir as perdas elétricas. Todas as modelagens e desenvolvimentos destes estudos estão aqui relatados. Por fim, o trabalho se propõe a identificar os sistemas multiagentes como uma tecnologia a ser empregada tanto para a pesquisa, quanto para implementação dessas redes elétricas.
Resumo:
Surgical interventions are usually performed in an operation room; however, access to the information by the medical team members during the intervention is limited. While in conversations with the medical staff, we observed that they attach significant importance to the improvement of the information and communication direct access by queries during the process in real time. It is due to the fact that the procedure is rather slow and there is lack of interaction with the systems in the operation room. These systems can be integrated on the Cloud adding new functionalities to the existing systems the medical expedients are processed. Therefore, such a communication system needs to be built upon the information and interaction access specifically designed and developed to aid the medical specialists. Copyright 2014 ACM.