964 resultados para Digital Modelling
Resumo:
Increasingly, people's digital identities are attached to, and expressed through, their mobile devices. At the same time digital sensors pervade smart environments in which people are immersed. This paper explores different perspectives in which users' modelling features can be expressed through the information obtained by their attached personal sensors. We introduce the PreSense Ontology, which is designed to assign meaning to sensors' observations in terms of user modelling features. We believe that the Sensing Presence ( PreSense ) Ontology is a first step toward the integration of user modelling and "smart environments". In order to motivate our work we present a scenario and demonstrate how the ontology could be applied in order to enable context-sensitive services. © 2012 Springer-Verlag.
Resumo:
This article presents the principal results of the doctoral thesis “Semantic-oriented Architecture and Models for Personalized and Adaptive Access to the Knowledge in Multimedia Digital Library” by Desislava Ivanova Paneva-Marinova (Institute of Mathematics and Informatics), successfully defended before the Specialised Academic Council for Informatics and Mathematical Modelling on 27 October, 2008.
Resumo:
Report published in the Proceedings of the National Conference on "Education and Research in the Information Society", Plovdiv, May, 2016
Resumo:
The results of numerical modelling of nonlinear propagation of an optical signal in multimode fibres with a small differential group delay are presented. It is found that the dependence of the error vector magnitude (EVM) on the differential group delay can be reduced by increasing the number of ADC samples per symbol in the numerical implementation of the differential group delay compensation algorithm in the receiver. The possibility of using multimode fibres with a small differential group delay for data transmission in modern digital communication systems is demonstrated. It is shown that with increasing number of modes the strong coupling regime provides a lower EVM level than the weak coupling one.
Resumo:
ACKNOWLEDGMENTS. We would like to thank Fernando Gonzalez-Dominguez and Gilberto Vaughan for providing the chicken pox case reports from Mexico, and the Estonia Health Board, Department of Communicable Disease Surveillance and Control, for Estonian chicken pox case reports. KB would like to thank Mercedes Pascual, her lab, and Marisa Eisenberg for helpful comments. Jesus Cantu (research assistant, Princeton University) translated and categorized chicken pox searches from Mexico, Thailand, Australia, and the US.
Resumo:
Modelling the susceptibility of permafrost slopes to disturbance can identify areas at risk to future disturbance and result in safer infrastructure and resource development in the Arctic. In this study, we use terrain attributes derived from a digital elevation model, an inventory of permafrost slope disturbances known as active-layer detachments (ALDs) and generalised additive modelling to produce a map of permafrost slope disturbance susceptibility for an area on northern Melville Island, in the Canadian High Arctic. By examining terrain variables and their relative importance, we identified factors important for initiating slope disturbance. The model was calibrated and validated using 70 and 30 per cent of a data-set of 760 mapped ALDs, including disturbed and randomised undisturbed samples. The generalised additive model calibrated and validated very well, with areas under the receiver operating characteristic curve of 0.89 and 0.81, respectively, demonstrating its effectiveness at predicting disturbed and undisturbed samples. ALDs were most likely to occur below the marine limit on slope angles between 3 and 10° and in areas with low values of potential incoming solar radiation (north-facing slopes).
Resumo:
One of the leading motivations behind the multilingual semantic web is to make resources accessible digitally in an online global multilingual context. Consequently, it is fundamental for knowledge bases to find a way to manage multilingualism and thus be equipped with those procedures for its conceptual modelling. In this context, the goal of this paper is to discuss how common-sense knowledge and cultural knowledge are modelled in a multilingual framework. More particularly, multilingualism and conceptual modelling are dealt with from the perspective of FunGramKB, a lexico-conceptual knowledge base for natural language understanding. This project argues for a clear division between the lexical and the conceptual dimensions of knowledge. Moreover, the conceptual layer is organized into three modules, which result from a strong commitment towards capturing semantic knowledge (Ontology), procedural knowledge (Cognicon) and episodic knowledge (Onomasticon). Cultural mismatches are discussed and formally represented at the three conceptual levels of FunGramKB.
Resumo:
Thermoplastic composites are likely to emerge as the preferred solution for meeting the high-volume production demands of passenger road vehicles. Substantial effort is currently being directed towards the development of new modelling techniques to reduce the extent of costly and time consuming physical testing. Developing a high-fidelity numerical model to predict the crush behaviour of composite laminates is dependent on the accurate measurement of material properties as well as a thorough understanding of damage mechanisms associated with crush events. This paper details the manufacture, testing and modelling of self-supporting corrugated-shaped thermoplastic composite specimens for crashworthiness assessment. These specimens demonstrated a 57.3% higher specific energy absorption compared to identical specimen made from thermoset composites. The corresponding damage mechanisms were investigated in-situ using digital microscopy and post analysed using Scanning Electron Microscopy (SEM). Splaying and fragmentation modes were the 2 primary failure modes involving fibre breakage, matrix cracking and delamination. A mesoscale composite damage model, with new non-linear shear constitutive laws, which combines a range of novel techniques to accurately capture the material response under crushing, is presented. The force-displacement curves, damage parameter maps and dissipated energy, obtained from the numerical analysis, are shown to be in a good qualitative and quantitative agreement with experimental results. The proposed approach could significantly reduce the extent of physical testing required in the development of crashworthy structures.
Resumo:
Modern manufacturing systems should satisfy emerging needs related to sustainable development. The design of sustainable manufacturing systems can be valuably supported by simulation, traditionally employed mainly for time and cost reduction. In this paper, a multi-purpose digital simulation approach is proposed to deal with sustainable manufacturing systems design through Discrete Event Simulation (DES) and 3D digital human modelling. DES models integrated with data on power consumption of the manufacturing equipment are utilized to simulate different scenarios with the aim to improve productivity as well as energy efficiency, avoiding resource and energy waste. 3D simulation based on digital human modelling is employed to assess human factors issues related to ergonomics and safety of manufacturing systems. The approach is implemented for the sustainability enhancement of a real manufacturing cell of the aerospace industry, automated by robotic deburring. Alternative scenarios are proposed and simulated, obtaining a significant improvement in terms of energy efficiency (−87%) for the new deburring cell, and a reduction of energy consumption around −69% for the coordinate measuring machine, with high potential annual energy cost savings and increased energy efficiency. Moreover, the simulation-based ergonomic assessment of human operator postures allows 25% improvement of the workcell ergonomic index.
Resumo:
This work represents an original contribution to the methodology for ecosystem models' development as well as the rst attempt of an end-to-end (E2E) model of the Northern Humboldt Current Ecosystem (NHCE). The main purpose of the developed model is to build a tool for ecosystem-based management and decision making, reason why the credibility of the model is essential, and this can be assessed through confrontation to data. Additionally, the NHCE exhibits a high climatic and oceanographic variability at several scales, the major source of interannual variability being the interruption of the upwelling seasonality by the El Niño Southern Oscillation, which has direct e ects on larval survival and sh recruitment success. Fishing activity can also be highly variable, depending on the abundance and accessibility of the main shery resources. This context brings the two main methodological questions addressed in this thesis, through the development of an end-to-end model coupling the high trophic level model OSMOSE to the hydrodynamics and biogeochemical model ROMS-PISCES: i) how to calibrate ecosystem models using time series data and ii) how to incorporate the impact of the interannual variability of the environment and shing. First, this thesis highlights some issues related to the confrontation of complex ecosystem models to data and proposes a methodology for a sequential multi-phases calibration of ecosystem models. We propose two criteria to classify the parameters of a model: the model dependency and the time variability of the parameters. Then, these criteria along with the availability of approximate initial estimates are used as decision rules to determine which parameters need to be estimated, and their precedence order in the sequential calibration process. Additionally, a new Evolutionary Algorithm designed for the calibration of stochastic models (e.g Individual Based Model) and optimized for maximum likelihood estimation has been developed and applied to the calibration of the OSMOSE model to time series data. The environmental variability is explicit in the model: the ROMS-PISCES model forces the OSMOSE model and drives potential bottom-up e ects up the foodweb through plankton and sh trophic interactions, as well as through changes in the spatial distribution of sh. The latter e ect was taken into account using presence/ absence species distribution models which are traditionally assessed through a confusion matrix and the statistical metrics associated to it. However, when considering the prediction of the habitat against time, the variability in the spatial distribution of the habitat can be summarized and validated using the emerging patterns from the shape of the spatial distributions. We modeled the potential habitat of the main species of the Humboldt Current Ecosystem using several sources of information ( sheries, scienti c surveys and satellite monitoring of vessels) jointly with environmental data from remote sensing and in situ observations, from 1992 to 2008. The potential habitat was predicted over the study period with monthly resolution, and the model was validated using quantitative and qualitative information of the system using a pattern oriented approach. The nal ROMS-PISCES-OSMOSE E2E ecosystem model for the NHCE was calibrated using our evolutionary algorithm and a likelihood approach to t monthly time series data of landings, abundance indices and catch at length distributions from 1992 to 2008. To conclude, some potential applications of the model for shery management are presented and their limitations and perspectives discussed.
Resumo:
[EN]In recent years, several historical rock art sites have been located in Alcazar de San. Given its fragility, one of the most important and urgent tasks being undertaken within the framework of the DIPAR research project is the documentation of these sites. Among the various techniques used to this, two stand out above the rest: the application of digital photography at night, and three-dimensional documentation.
Resumo:
The problem: Around 300 million people worldwide have asthma and prevalence is increasing. Support for optimal self-management can be effective in improving a range of outcomes and is cost effective, but is underutilised as a treatment strategy. Supporting optimum self-management using digital technology shows promise, but how best to do this is not clear. Aim: The purpose of this project was to explore the potential role of a digital intervention in promoting optimum self-management in adults with asthma. Methods: Following the MRC Guidance on the Development and Evaluation of Complex Interventions which advocates using theory, evidence, user testing and appropriate modelling and piloting, this project had 3 phases. Phase 1: Examination of the literature to inform phases 2 and 3, using systematic review methods and focussed literature searching. Phase 2: Developing the Living Well with Asthma website. A prototype (paper-based) version of the website was developed iteratively with input from a multidisciplinary expert panel, empirical evidence from the literature (from phase 1), and potential end users via focus groups (adults with asthma and practice nurses). Implementation and behaviour change theories informed this process. The paper-based designs were converted to the website through an iterative user centred process (think aloud studies with adults with asthma). Participants considered contents, layout, and navigation. Development was agile using feedback from the think aloud sessions immediately to inform design and subsequent think aloud sessions. Phase 3: A pilot randomised controlled trial over 12 weeks to evaluate the feasibility of a Phase 3 trial of Living Well with Asthma to support self-management. Primary outcomes were 1) recruitment & retention; 2) website use; 3) Asthma Control Questionnaire (ACQ) score change from baseline; 4) Mini Asthma Quality of Life (AQLQ) score change from baseline. Secondary outcomes were patient activation, adherence, lung function, fractional exhaled nitric oxide (FeNO), generic quality of life measure (EQ-5D), medication use, prescribing and health services contacts. Results: Phase1: Demonstrated that while digital interventions show promise, with some evidence of effectiveness in certain outcomes, participants were poorly characterised, telling us little about the reach of these interventions. The interventions themselves were poorly described making drawing definitive conclusions about what worked and what did not impossible. Phase 2: The literature indicated that important aspects to cover in any self-management intervention (digital or not) included: asthma action plans, regular health professional review, trigger avoidance, psychological functioning, self-monitoring, inhaler technique, and goal setting. The website asked users to aim to be symptom free. Key behaviours targeted to achieve this include: optimising medication use (including inhaler technique); attending primary care asthma reviews; using asthma action plans; increasing physical activity levels; and stopping smoking. The website had 11 sections, plus email reminders, which promoted these behaviours. Feedback during think aloud studies was mainly positive with most changes focussing on clarification of language, order of pages and usability issues mainly relating to navigation difficulties. Phase 3: To achieve our recruitment target 5383 potential participants were invited, leading to 51 participants randomised (25 to intervention group). Age range 16-78 years; 75% female; 28% from most deprived quintile. Nineteen (76%) of the intervention group used the website for an average of 23 minutes. Non-significant improvements in favour of the intervention group observed in the ACQ score (-0.36; 95% confidence interval: -0.96, 0.23; p=0.225), and mini-AQLQ scores (0.38; -0.13, 0.89; p=0.136). A significant improvement was observed in the activity limitation domain of the mini-AQLQ (0.60; 0.05 to 1.15; p = 0.034). Secondary outcomes showed increased patient activation and reduced reliance on reliever medication. There was no significant difference in the remaining secondary outcomes. There were no adverse events. Conclusion: Living Well with Asthma has been shown to be acceptable to potential end users, and has potential for effectiveness. This intervention merits further development, and subsequent evaluation in a Phase III full scale RCT.