959 resultados para Differential equations, Elliptic


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study measure functional differential equations and clarify their relation to generalized ordinary differential equations. We show that functional dynamic equations on time scales represent a special case of measure functional differential equations. For both types of equations, we obtain results on the existence and uniqueness of solutions, continuous dependence, and periodic averaging.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we give sufficient conditions for the uniform boundedness and uniform ultimate boundedness of solutions of a class of retarded functional differential equations with impulse effects acting on variable times. We employ the theory of generalized ordinary differential equations to obtain our results. As an example, we investigate the boundedness of the solution of a circulating fuel nuclear reactor model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We characterize the existence of periodic solutions of some abstract neutral functional differential equations with finite and infinite delay when the underlying space is a UMD space. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we discuss the existence of mild and classical solutions for a class of abstract non-autonomous neutral functional differential equations. An application to partial neutral differential equations is considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN] The purpose of this paper is to present a fixed point theorem for generalized contractions in partially ordered complete metric spaces. We also present an application to first-order ordinary differential equations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN] In this work, we present a new model for a dense disparity estimation and the 3-D geometry reconstruction using a color image stereo pair. First, we present a brief introduction to the 3-D Geometry of a camera system. Next, we propose a new model for the disparity estimation based on an energy functional. We look for the local minima of the energy using the associate Euler-Langrage partial differential equations. This model is a generalization to color image of the model developed in, with some changes in the strategy to avoid the irrelevant local minima. We present some numerical experiences of 3-D reconstruction, using this method some real stereo pairs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il trattamento numerico dell'equazione di convezione-diffusione con le relative condizioni al bordo, comporta la risoluzione di sistemi lineari algebrici di grandi dimensioni in cui la matrice dei coefficienti è non simmetrica. Risolutori iterativi basati sul sottospazio di Krylov sono ampiamente utilizzati per questi sistemi lineari la cui risoluzione risulta particolarmente impegnativa nel caso di convezione dominante. In questa tesi vengono analizzate alcune strategie di precondizionamento, atte ad accelerare la convergenza di questi metodi iterativi. Vengono confrontati sperimentalmente precondizionatori molto noti come ILU e iterazioni di tipo inner-outer flessibile. Nel caso in cui i coefficienti del termine di convezione siano a variabili separabili, proponiamo una nuova strategia di precondizionamento basata sull'approssimazione, mediante equazione matriciale, dell'operatore differenziale di convezione-diffusione. L'azione di questo nuovo precondizionatore sfrutta in modo opportuno recenti risolutori efficienti per equazioni matriciali lineari. Vengono riportati numerosi esperimenti numerici per studiare la dipendenza della performance dei diversi risolutori dalla scelta del termine di convezione, e dai parametri di discretizzazione.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In vielen Teilgebieten der Mathematik ist es w"{u}nschenswert, die Monodromiegruppe einer homogenen linearen Differenzialgleichung zu verstehen. Es sind nur wenige analytische Methoden zur Berechnung dieser Gruppe bekannt, daher entwickeln wir im ersten Teil dieser Arbeit eine numerische Methode zur Approximation ihrer Erzeuger.rnIm zweiten Abschnitt fassen wir die Grundlagen der Theorie der Uniformisierung Riemannscher Fl"achen und die der arithmetischen Fuchsschen Gruppen zusammen. Auss erdem erkl"aren wir, wie unsere numerische Methode bei der Bestimmung von uniformisierenden Differenzialgleichungen dienlich sein kann. F"ur arithmetische Fuchssche Gruppen mit zwei Erzeugern erhalten wir lokale Daten und freie Parameter von Lam'{e} Gleichungen, welche die zugeh"origen Riemannschen Fl"achen uniformisieren. rnIm dritten Teil geben wir einen kurzen Abriss zur homologischen Spiegelsymmetrie und f"uhren die $widehat{Gamma}$-Klasse ein. Wir erkl"aren wie diese genutzt werden kann, um eine Hodge-theoretische Version der Spiegelsymmetrie f"ur torische Varit"aten zu beweisen. Daraus gewinnen wir Vermutungen "uber die Monodromiegruppe $M$ von Picard-Fuchs Gleichungen von gewissen Familien $f:mathcal{X}rightarrow bbp^1$ von $n$-dimensionalen Calabi-Yau Variet"aten. Diese besagen erstens, dass bez"uglich einer nat"urlichen Basis die Monodromiematrizen in $M$ Eintr"age aus dem K"orper $bbq(zeta(2j+1)/(2 pi i)^{2j+1},j=1,ldots,lfloor (n-1)/2 rfloor)$ haben. Und zweitens, dass sich topologische Invarianten des Spiegelpartners einer generischen Faser von $f:mathcal{X}rightarrow bbp^1$ aus einem speziellen Element von $M$ rekonstruieren lassen. Schliess lich benutzen wir die im ersten Teil entwickelten Methoden zur Verifizierung dieser Vermutungen, vornehmlich in Hinblick auf Dimension drei. Dar"uber hinaus erstellen wir eine Liste von Kandidaten topologischer Invarianten von vermutlich existierenden dreidimensionalen Calabi-Yau Variet"aten mit $h^{1,1}=1$.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we develop a new method to determine the essential spectrum of coupled systems of singular differential equations. Applications to problems from magnetohydrodynamics and astrophysics are given.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Differential equations are equations that involve an unknown function and derivatives. Euler's method are efficient methods to yield fairly accurate approximations of the actual solutions. By manipulating such methods, one can find ways to provide good approximations compared to the exact solution of parabolic partial differential equations and nonlinear parabolic differential equations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The notion of a differential invariant for systems of second-order differential equations on a manifold M with respect to the group of vertical automorphisms of the projection is de?ned and the Chern connection attached to a SODE allows one to determine a basis for second-order differential invariants of a SODE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Schrödinger’s equation of a three-body system is a linear partial differential equation (PDE) defined on the 9-dimensional configuration space, ℝ9, naturally equipped with Jacobi’s kinematic metric and with translational and rotational symmetries. The natural invariance of Schrödinger’s equation with respect to the translational symmetry enables us to reduce the configuration space to that of a 6-dimensional one, while that of the rotational symmetry provides the quantum mechanical version of angular momentum conservation. However, the problem of maximizing the use of rotational invariance so as to enable us to reduce Schrödinger’s equation to corresponding PDEs solely defined on triangular parameters—i.e., at the level of ℝ6/SO(3)—has never been adequately treated. This article describes the results on the orbital geometry and the harmonic analysis of (SO(3),ℝ6) which enable us to obtain such a reduction of Schrödinger’s equation of three-body systems to PDEs solely defined on triangular parameters.