924 resultados para Diels-Alder cycloaddition reaction
Resumo:
Abstract Title of Document: Diversity in Catalytic Reactions of Propargylic Diazoesters Huang Qiu, Doctor of Philosophy, 2016 Directed By: Professor Michael P. Doyle, Department of Chemistry and Biochemistry Propargylic aryldiazoesters, which possess multiple reactive functional groups in a single molecule, were expected to undergo divergent reaction pathways as a function of catalysts. A variety of transition metal complexes including rhodium(II), palladium(II), silver(I), mercury(II), copper(I and II), and cationic gold (I) complexes have been examined to be effective in the catalytic domino reactions of propargylic aryldiazoesters. An unexpected Lewis acid catalyzed pathway was also discovered by using FeCl3 as the catalyst. Under the catalysis of selected gold catalysts, propargylic aryldiazoesters exist in equilibrium with 1-aryl-1,2-dien-1-yl diazoacetate allenes that are rapidly formed at room temperature through 1,3-acyloxy migration. The newly formed allenes further undergo a metal-free rearrangement in which the terminal nitrogen of the diazo functional group adds to the central carbon of the allene initiating a sequence of bond forming reactions resulting in the production of 1,5-dihydro-4H-pyrazol-4-ones in good yields. These 1,5-dihydro-4H-pyrazol-4-ones undergo intramolecular 1,3-acyl migration to form an equilibrium mixture or quantitatively transfer the acyl group to an external nucleophile with formation of 4-hydroxypyrazoles. In the presence of a pyridine-N-oxide, both E- and Z-1,3-dienyl aryldiazoacetates are formed in high combined yields by Au(I)-catalyzed rearrangement of propargyl arylyldiazoacetates at short reaction times. Under thermal reactions the E-isomers form the products from intramolecular [4+2]-cycloaddition with H‡298 = 15.6 kcal/mol and S‡298= -27.3 cal/ (mol•degree). The Z-isomer is inert to [4+2]-cycloaddition under these conditions. The Hammett relationships from aryl-substituted diazo esters ( = +0.89) and aryl-substituted dienes ( = -1.65) are consistent with the dipolar nature of this transformation. An unexpected reaction for the synthesis of seven-membered conjugated 1,4-diketones from propargylic diazoesters with unsaturated imines was disclosed. To undergo this process vinyl gold carbene intermediates generated by 1,2-acyloxy migration of propargylic aryldiazoesters undergo a formal [4+3]-cycloaddition, and the resulting aryldiazoesters tethered dihydroazepines undergo an intricate metal-free process to form observed seven-membered conjugated 1,4-diketones with moderate to high yields.
Resumo:
Reaction of 3-methyl-2-phenylpyrrocoline(I) and dimethyl acetylenedicarboxylate(II) in refluxing toluene furnishes cis-7',8-dihydro.4,5,8,9-tetramethoxycarbonyl-7'-phenyl-7' -methylazocino(2,1,8-cd]pyrrolizine (III) and trans-7',8-dihydro-4,5,8,9-tetramethoxycarbonyl-7-phenyl-7'-methylazocino[2,1,8-cd]pyrrolizine (IV), while the same reaction at ambient temperature yields 1-[(1,2-trans-dimethoxycarbonyl)vinyl]-3-methyl-2-phenylpyrrocoline (V) and 1-[(1,2-cis-di(methoxycarbonyl)vinyl)--methyl-2- phenylpyirocoUne (V) and 1-[(I,2-cis-di(methoxycarbonyl)Yinyl]-3-metbyl-2-phenylpyrrocoline(VI) as the major products. The structure of IV has been determined by X-ray crystallography.A possible mechanism of formation of these products is also discussed.
Resumo:
This thesis describes the chemoenzymatic synthesis of three morphine alkaloids. The total synthesis of dihydrocodeine and hydrocodone was accomplished starting from bromobenzene in 16 and 17 steps, respectively. The key steps included a microbial oxidation of bromobenzene by E. coli JM109 (pDTG601A), a Kazmaier-Claisen rearrangement of glycinate ester to generate C-9 and C-14 stereo centers, a Johnson-Claisen rearrangement to set the C-13 quaternary center, and a C-10/C-11 ring closure via a Friedel-Crafts reaction. In addition, the total synthesis of ent-hydromorphone starting from β-bromoethylbenzene in 12 steps is also described. The key reactions included the enzymatic dihydroxylation of β-bromoethylbenzene to the corresponding cis-cyclohexadienediol, a Mitsunobu reaction, and an oxidative dearomatization followed by an intramolecular [4+2] cycloaddition.
Resumo:
Cycloaddition reactions have been employed in polymer synthesis since the mid-nineteen sixties. This critical review will highlight recent notable advances in this field. For example, [2 + 2] cycloaddition reactions have been utilized in numerous polymerizations to enable the construction of strained polymer systems such as poly(2-azetidinone)s that can, in turn, afford polyfunctional beta-amino acid derived polymers. Polymers have also been synthesized successfully via (3 + 2) cycloaddition methods utilizing both thermal and high-pressure conditions. 'Click chemistry'-a process involving the reaction of azides with olefins, has also been adopted to generate linear and hyperbranched polymer architectures in a very efficient manner. [4 + 2] Cycloadditions have also been utilized under thermal and high-pressure conditions to produce rigid polymers such as polyimides and polyphenylenes. These cycloaddition polymerization methods afford polymers with potential for use in high performance polymers applications such as high temperature resistant coatings and polymeric organic light emitting diodes.
Resumo:
Carbohydrate-derived substrates having (i) C-5 nitrone and C-3-O-allyl, (ii) C-4 vinyl and a C-3-O-tethered nitrone, and (iii) C-5 nitrone and C-4-allyloxymethyl generated tetracyclic isoxazolidinooxepane/-pyrart ring systems upon intramolecular nitrone cycloaddition reactions. Deprotection of the 1,2acetonides of these derivatives followed by introduction of uracil base via Vorbruggen reaction condition and cleavage of the isooxazolidine rings as well as of benzyl groups by transfer hydrogenolysis yielded an oxepane ring containing blicyclic and spirocyclic nucleosides. The corresponding oxepane based nucleoside analogues were prepared by cleavage of isoxazolidine and furanose rings, coupling of the generated amino functiontalities with 5-amino-4,6-dichloropyrimidine, cyclization to purine rings, and finally aminolysis.
Resumo:
The compound [Pd(bzan)(mu -N-3)](2) 1, bzan = benzylideneaniline, was prepared from [Pd(bzan) (mu -OOCCH3)](2) by an anion exchange reaction. The 1,3-dipolar cycloaddition of carbon disulfide to the bridged coordinated azide in the cyclometallated compound I was investigated. The species resulting from this reaction, di(mu -N,S-1,2,3,4-thiatriazol-5-thiolate)bis[(benzylideneaniline)palladium(II)] 2, was characterized by IR spectroscopy and X-ray diffraction. The compound 2 is a dimer containing two [Pd(benzylideneaniline)] moieties connected by two vicinal bridging N,S-1,2,3,4-thiatriazole-5-thiolate anions in a square-planar coordination geometry for the palladium atoms.
Resumo:
A general method for the synthesis of triazoles containing selenium and tellurium was accomplished via a CuCAAC reaction between organic azides and a terminal triple bond, generated by in situ deprotection of the silyl group. The reaction tolerates alkyl and arylazides, with alkyl and aryl substituents directly bonded to the chalcogen atom. The products were readily functionalized by a nickel-catalyzed Negishi cross-coupling reaction, furnishing the aryl-heteroaryl products at the 4-position in good yields. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
This thesis is the result of the study of two reactions leading to the formation of important heterocyclic compounds of potential pharmaceutical interest. The first study concerns the reaction of (1,3)-dipolar cycloaddition between nitrones and activated olefins by hydrogen bond catalysis of thioureas derivatives leading to the formation of a five-membered cyclic adducts, an interesting and strategic synthetic intermediate, for the synthesis of benzoazepine. The second project wants to explore the direct oxidative C(sp3)-H α-alkylation of simple amides with subsequent addition of an olefin and cyclization in order to obtain the corresponding oxazine. Both reactions are still under development.
Resumo:
The main research theme of this dissertation is the synthesis of g- and b-carbolines using a metal-catalyzed [2+2+2] cycloaddition strategy of tethered alkynyl-ynamides (diynes) with nitriles. g- and b-carbolines form the core of a large group of natural product and represent important targets for organic chemists. Many of these carbolines showed pharmacological effects ranging from anti-tumor to anxiolytic and anti-HIV activity. A model study with N-Ethynyl-N-tosyl-2-(2-phenylethynyl)aniline and methyl cyanoformate showed that rhodium-based catalysts promote efficiently the reaction. A further optimization showed that the regioselectivity of the reaction can be tuned by the choice of the solvent or by the catalytic system. Application to a larger scope of diynes showed that the regioselectivity strongly depends on the type of substitution of the alkynyl moieties, giving regioselectivities in the range g:b = 1/0 to g:b = 0/1. This [2+2+2] cycloaddition approach for the synthesis of the g- and b-carboline cores was successfully applied to the first total synthesis of Isoperlolyrine and the total synthesis of Perlolyrine. Extension of this strategy to heterocumulenes as cycloaddition partners allowed the synthesis of a g-carbolinone, a thiopyrano[3,4-b]indol-3-imine and thiopyranothiones.
Resumo:
Kinetics of 1,3-dipolar cycloaddition involving azomethine ylides, generated from thermal [1,2]-prototropy of the corresponding imino ester, employing differential scanning calorimetry (DSC), is surveyed. Glycine and phenylalanine derived imino esters have different behavior. The first one prefers reacting with itself at 75 ºC, rather than with the dipolarophile. However, the α-substituted imino ester gives the cycloadduct at higher temperatures. The thermal dynamic analysis by 1H NMR of the neat reaction mixture of the glycine derivative reveals the presence of signals corresponding to the dipole in very small proportion. The non-isothermal and isothermal DSC curves of the cycloaddition of phenylalaninate and diisobutyl fumarate are obtained from freshly prepared samples. The application of known kinetic models and mathematical multiple non-linear regressions (NLR) allow to determine and to compare Ea, lnA, reaction orders, and reaction enthalpy. Finally a rate equation for each different temperature can be established for this particular thermal cycloaddition.
Resumo:
A new bimetallic catalyst derived from nickel and copper has been used successfully for the first time in the multicomponent reaction of terminal alkynes, sodium azide, and benzyl bromide derivatives. The presence of both metallic species on the surface of magnetite seems to have a positive and synergetic effect. The catalyst loading is the lowest ever published for a catalyst of copper anchored on any type of iron support. The catalyst could be easily removed from the reaction media just by magnetic decantation and it could be reused up to ten times without any negative effect on the initial results.
Resumo:
The enantioselective binap–silver catalyzed multicomponent 1,3-dipolar cycloaddition using ethyl glyoxylate, phenylalanine ethyl ester, and maleimides is described. The employment of basic silver carbonate allows the reaction to take place in the absence of an extra base giving high yields and ee. In addition, low-level calculations regarding the importance of the benzyl substituent at the α-position of the amino ester justify the expected absolute configuration of the final cycloadducts and the observed high enantiodiscrimination.
Resumo:
The silver-catalysed multicomponent reaction between ethyl glyoxylate, 2,2-dimethoxyacetaldehyde, or phenylglyoxal as aldehyde components with a α-amino ester hydrochloride and a dipolarophile in the presence of triethylamine is described. This domino process takes place at room temperature by in situ liberation of the α-amino ester followed by the formation of the imino ester, which is the precursor of a metalloazomethine ylide. The cycloaddition of this species and the corresponding dipolarophile affords polysubstituted proline derivatives. Ethyl glyoxylate reacts with glycinate, alaninate, phenylalaninate and phenylglycinate at room temperature in the presence of representative dipolarophiles affording endo-2,5-cis-cycloadducts in good yields and high diastereoselection. In addition, 2,2-dimethoxyacetaldehyde is evaluated with the same amino esters and dipolarophiles, under the same mild conditions, generating the corresponding endo-2,5-cis-cycloadducts with higher diastereoselections than the obtained in the same reactions using ethyl glyoxylate. In the case of phenylglyoxal the corresponding 5-benzoyl-endo-2,5-cis cycloadducts are obtained in short reaction times and similar diasteroselection.
Resumo:
In this work, the synthesis of a new bifunctionalized cyclooctyne for a possible layer by layer surface functionalization is presented. The main objective is to find a more stable molecule than the literature known methyl enol ether substituted cyclooctyne. Accordingly, the two target functionalities are an internal alkyne group and a vinyl methyl sulfide group. The synthesis was achieved in 9 steps and consists first of all in the preparation of an aldehyde starting from 1,5-cyclooctadiene with a cyclopropanation reaction followed by a reduction and the SWERN oxidation to an aldehyde. The new functionality was introduced by exploiting the WITTIG reaction. For the alkyne group a bromination followed by a double elimination gave good results. The reactivity of the new molecule was tested using a sequential application of SPAAC and iEDDA reactions, comparing it with the cyclooctyne functionalized with a methyl enol ether. Concerning the comparison of both compounds the sulfur ether is significantly slower and therefore more stable. It will be tested in the future for surface functionalization from the KOERT group.
Resumo:
Twelve novel 8-hydroxyquinoline derivatives were synthesized with good yields by performing copper-catalyzed Huisgen 1,3-dipolar cycloaddition (click reaction) between an 8-O-alkylated-quinoline containing a terminal alkyne and various aromatic or protected sugar azides. These compounds were evaluated in vitro for their antiproliferative activity on various cancer cell types. Protected sugar derivative 16 was the most active compound in the series, exhibiting potent antiproliferative activity and high selectivity toward ovarian cancer cells (OVCAR-03, GI50 < 0.25 μg mL(-1)); this derivative was more active than the reference drug doxorubicin (OVCAR-03, GI50 = 0.43 μg mL(-1)). In structure-activity relationship (SAR) studies, the physico-chemical parameters of the compounds were evaluated and docking calculations were performed for the α-glucosidase active site to predict the possible mechanism of action of this series of compounds.