799 resultados para Design Factors
Resumo:
This paper describes the vulnerability of masonry under shear; first the mechanisms of in-plane and out-of-plane shear performance of masonry are reviewed; both the unreinforced and lightly reinforced masonry wall systems are considered. Factors affecting the response of unreinforced and reinforced masonry to shear are described and the effect of the variability of those factors to the failure mode of masonry shear walls is also discussed. Some critique is provided on the existing design provisions in various masonry standards.
Resumo:
Background: It is predicted that China will have the largest number of cases of dementia in the world by 2025 (Ferri et al., 2005). Research has demonstrated that caring for family members with dementia can be a long-term, burdensome activity resulting in physical and emotional distress and impairment (Pinquart & Sorensen, 2003b). The establishment of family caregiver supportive services in China can be considered urgent; and the knowledge of the caregiving experience and related influencing factors is necessary to inform such services. Nevertheless, in the context of rapid demographic and socioeconomic change, the impact of caregiving for rural and urban Chinese adult-child caregivers may be different, and different needs in supportive services may therefore be expected. Objectives: The aims of this research were 1) to examine the potential differences existing in the caregiving experience between rural and urban adult-child caregivers caring for parents with dementia in China; and 2) to examine the potential differences existing in the influencing factors of the caregiving experience for rural as compared with urban adult-child caregivers caring for parents with dementia in China. Based on the literature review and Kramer.s (1997) caregiver adaptation model, six concepts and their relationships of caregiving experience were studied: severity of the care receivers. dementia, caregivers. appraisal of role strain and role gain, negative and positive well-being outcomes, and health related quality of life. Furthermore, four influencing factors (i.e., filial piety, social support, resilience, and personal mastery) were studied respectively. Methods: A cross-sectional, comparative design was used to achieve the aims of the study. A questionnaire, which was designed based on the literature review and on Kramer.s (1997) caregiver adaptation model, was completed by 401 adult-child caregivers caring for their parents with dementia from the mental health outpatient departments in five hospitals in the Yunnan province, P.R. China. Structural equation modelling (SEM) was employed as the main statistical technique for data analyses. Other statistical techniques (e.g., t-tests and Chi-Square tests) were also conducted to compare the demographic characteristics and the measured variables between rural and urban groups. Results: For the first research aim, the results indicated that urban adult-child caregivers in China experienced significantly greater strain and negative well-being outcomes than their rural peers; whereas, the difference on the appraisal of role gain and positive outcomes was nonsignificant between the two groups. The results also indicated that the amounts of severity of care receivers. dementia and caregivers. health related quality of life do not have the same meanings between the two groups. Thus, the levels of these two concepts were not comparable between the rural and urban groups in this study. Moreover, the results also demonstrated that the negative direct effect of gain on negative outcomes in urban caregivers was stronger than that in rural caregivers, suggesting that the urban caregivers tended to use appraisal of role gain to protect themselves from negative well-being outcomes to a greater extent. In addition, the unexplained variance in strain in the urban group was significantly more than that in the rural group, suggesting that there were other unmeasured variables besides the severity of care receivers. dementia which would predict strain in urban caregivers compared with their rural peers. For the second research aim, the results demonstrated that rural adult-child caregivers reported a significantly higher level of filial piety and more social support than their urban counterparts, although the two groups did not significantly differ on the levels of their resilience and personal mastery. Furthermore, although the mediation effects of these four influencing factors on both positive and negative aspects remained constant across rural and urban adult-child caregivers, urban caregivers tended to be more effective in using personal mastery to protect themselves from role strain than rural caregivers, which in turn protects them more from the negative well-being outcomes than was the case with their rural peers. Conclusions: The study extends the application of Kramer.s caregiving adaptation process model (Kramer, 1997) to a sample of adult-child caregivers in China by demonstrating that both positive and negative aspects of caregiving may impact on the caregiver.s health related quality of life, suggesting that both aspects should be targeted in supportive interventions for Chinese family caregivers. Moreover, by demonstrating partial mediation effects, the study provides four influencing factors (i.e., filial piety, social support, resilience, and personal mastery) as specific targets for clinical interventions. Furthermore, the study found evidence that urban adult-child caregivers had more negative but similar positive experience compared to their rural peers, suggesting that the establishment of supportive services for urban caregivers may be more urgent at present stage in China. Additionally, since urban caregivers tended to use appraisal of role gain and personal mastery to protect themselves from negative well-being outcomes than rural caregivers to a greater extend, interventions targeting utility of gain or/and personal mastery to decrease negative outcomes might be more effective in urban caregivers than in rural caregivers. On the other hand, as cultural expectations and expression of filial piety tend to be more traditional in rural areas, interventions targeting filial piety could be more effective among rural caregivers. Last but not least, as rural adult-child caregivers have more existing natural social support than their urban counterparts, mobilising existing natural social support resources may be more beneficial for rural caregivers, whereas, formal supports (e.g., counselling services, support groups and adult day care centres) should be enhanced for urban caregivers.
Resumo:
Whether the community is looking for “scapegoats” to blame, or seeking more radical and deeper causes, health care managers are in the firing line whenever there are woes in the health care sector. The public has a right to question whether ethics have much influence on the everyday decision making of health care managers. This thesis explores, through a series of published papers, the influence of ethics and other factors on the decision making of health care managers in Australia. Critical review of over 40 years of research on ethical decision making has revealed a large number of influencing factors, but there is a demonstrable lack of a multidimensional approach that measures the combined influences of these factors on managers. This thesis has developed an instrument, the Managerial Ethical Profile (MEP) scale, based on a multidimensional model combining a large number of influencing factors. The MEP scale measures the range of influences on individual managers, and describes the major tendencies by developing a number of empirical profiles derived from a hierarchical cluster analysis. The instrument was developed and refined through a process of pilot studies on academics and students (n=41) and small-business managers (n=41), and then was administered to the larger sample of health care managers (n=441). Results from this study indicate that Australian health care managers draw on a range of ethical frameworks in their everyday decision making, forming the basis of five MEPs (Knights, Guardian Angels, Duty Followers, Defenders, and Chameleons). Results from the study also indicate that the range of individual, organisational, and external factors that influence decision making can be grouped into three major clusters or functions. Cross referencing these functions and other demographic data to the MEPs provides analytical insight into the characteristics of the MEPs. These five profiles summarise existing strengths and weaknesses in managerial ethical decision making. Therefore identifying these profiles not only can contribute to increasing organisational knowledge and self-awareness, but also has clear implications for the design and implementation of ethics education and training in large scale organisations in the health care industry.
Resumo:
The need for accessible housing in Australia is acute. Both government and the community service sector recognise the importance of well designed accessible housing to optimise the integration of older people and people with disability, to encourage a prudent use of scarce health and community services and to enhance the liveability of our cities. In 2010, the housing industry, negotiated with the Australian Government and community representatives to adopt a nationally consistent voluntary code (Livable Housing Design) and a strategy to provide minimal level of accessibility in all new housing by 2020. Evidence from the implementation of such programs in the United Kingdom and USA, however, serves to question whether this aspirational goal can be achieved through voluntary codes. Minimal demand at the point of new sale, and problems in the production of housing to the required standards have raised questions regarding the application of program principles in the context of a voluntary code. In addressing the latter issue, this paper presents early findings from the analysis of qualitative interviews conducted with developers, builders and designers in various housing contexts. It identifies their “logics in use” in the production of housing in response to Livable Housing Design’s voluntary code and indicates factors that are likely to assist and impede the attainment of the 2020 aspirational goal.
Resumo:
This thesis presents a design investigation into how traditional technology-orientated markets can use design led innovation (DLI) strategies in order to achieve better market penetration of disruptive products. In a review of the Australian livestock industry, considering historical information and present-day trends, a lack of socio-cultural consideration was identified in the design and implementation of products and systems, previously been taken to market. Hence the adoption of these novel products has been documented as extremely slow. Classical diffusion models have typically been used in order to implement these products. However, this thesis poses that it is through the strategic intent of design led innovation, where heavily technology-orientated markets (such as the Australian livestock industry), can achieve better final adoption rates. By considering a range of external factors (business models, technology and user needs), rather than focusing design efforts solely on the technology, it is argued that using DLI approach will lead to disruptive innovations being made easier to adopt in the Australian livestock industry. This thesis therefore explored two research questions: 1. What are the social inhibitors to the adoption of a new technology in the Australian livestock industry? 2. Can design be used to gain a significant feedback response to the proposed innovation? In order to answer these questions, this thesis used a design led innovation approach to investigate the livestock industry, centring on how design can be used early on in the development of disruptive products being taken to market. This thesis used a three stage data collection programme, combining methods of design thinking, co-design and participatory design. The first study found four key themes to the social barriers of technology adoption; Social attitudes to innovation, Market monitoring, Attitude to 3D imaging and Online processes. These themes were built upon through a design thinking/co-design approach to create three ‘future scenarios’ to be tested in participant workshops. The analysis of the data collection found four key socio-cultural barriers that inhibited the adoption of a disruptive innovation in the Australian livestock industry. These were found to be a lack of Education, a Culture of Innovation, a Lack of Engagement and Communication barriers. This thesis recommends five key areas to be focused upon in the subsequent design of a new product in the Australian livestock industry. These recommendations are made to business and design managers looking to introduce disruptive innovations in this industry. Moreover, the thesis presents three design implications relating to stakeholder attitudes, practical constraints and technological restrictions of innovations within the industry.
Resumo:
The concept of constructability integrates individual construction functions and experiences through suitable and timely inputs into early stages of project planning and design. It aims to ease construction processes for a more effective and efficient achievement of overall project objectives. Similarly, the concepts of operability and maintainability integrate the functions and experiences of Operation and Maintenance (O&M) into project planning and design. Various studies suggested that these concepts have been implemented in isolation of each other and thus preventing optimum result in delivering infrastructure projects. This paper explores the integration of these three concepts in order to maximize the benefits of their implementation. It reviews the literature to identify the main O&M concerns, and assesses their association with constructability principles. This provides a structure to develop an extended constructability model that includes O&M concerns. It is anticipated that an extended constructability model that include O&M considerations can lead to a more efficient and effective delivery of infrastructure projects.
Resumo:
School belonging, measured as a unidimensional construct, is an important predictor of negative affective problems in adolescents, including depression and anxiety symptoms. A recent study found that one such measure, the Psychological Sense of School Membership (PSSM) scale, actually comprises three factors: Caring Relations, Acceptance, and Rejection. We explored the relations of these factors with negative affect in a sample of 504 Australian grade 7 and 8 students who completed the PSSM and Children’s Depression Inventory (CDI) at three time points. Each school belonging factor contributed to the prediction of negative affect in cross-sectional analyses. Scores on the Acceptance factor predicted subsequent negative affect for boys and girls, even controlling for prior negative affect. For girls, the Rejection factor was also significant in the prospective analysis. These findings have implications for the design of interventions and are further confirmation that school belonging should be considered a multidimensional construct.
Resumo:
Background: Little is known about the relationship between women's birthing experiences and the development of trauma symptoms. This study aimed to determine the incidence of acute trauma symptoms and posttraumatic stress disorder in women as a result of their labor and birth experiences, and to identify factors that contributed to the women's psychological distress. Method: Using a prospective, longitudinal design, women in their last trimester of pregnancy were recruited from four public hospital antenatal clinics. Telephone interviews with 499 participants were conducted at 4 to 6 weeks postpartum to explore the medical and midwifery management of the birth, perceptions of intrapartum care, and the presence of trauma symptoms. Results: One in three women (33%) identified a traumatic birthing event and reported the presence of at least three trauma symptoms. Twenty-eight women (5.6%) met DSM-IV criteria for acute posttraumatic stress disorder. Antenatal variables did not contribute to the development of acute or chronic trauma symptoms. The level of obstetric intervention experienced during childbirth (β= 0.351, p < 0.0001)and the perception of inadequate intrapartum care (β= 0.319, p < 0.0001) during labor were consistently associated with the development of acute trauma symptoms. Conclusions: Posttraumatic stress disorder after childbirth is a poorly recognized phenomenon. Women who experienced both a high level of obstetric intervention and dissatisfaction with their intrapartum care were more likely to develop trauma symptoms than women who received a high level of obstetric intervention or women who perceived their care to be inadequate. These findings should prompt a serious review of intrusive obstetric intervention during labor and delivery, and the care provided to birthing women.
Resumo:
Design for Manufacturing (DFM) is a highly integral methodology in product development, starting from the concept development phase, with the aim of improving manufacturing productivity and maintaining product quality. While Design for Assembly (DFA) is focusing on elimination or combination of parts with other components (Boothroyd, Dewhurst and Knight, 2002), which in most cases relates to performing a function and manufacture operation in a simpler way, DFM is following a more holistic approach. During DFM, the considerable background work required for the conceptual phase is compensated for by a shortening of later development phases. Current DFM projects normally apply an iterative step-by-step approach and eventually transfer to the developer team. Although DFM has been a well established methodology for about 30 years, a Fraunhofer IAO study from 2009 found that DFM was still one of the key challenges of the German Manufacturing Industry. A new, knowledge based approach to DFM, eliminating steps of DFM, was introduced in Paul and Al-Dirini (2009). The concept focuses on a concurrent engineering process between the manufacturing engineering and product development systems, while current product realization cycles depend on a rigorous back-and-forth examine-and-correct approach so as to ensure compatibility of any proposed design to the DFM rules and guidelines adopted by the company. The key to achieving reductions is to incorporate DFM considerations into the early stages of the design process. A case study for DFM application in an automotive powertrain engineering environment is presented. It is argued that a DFM database needs to be interfaced to the CAD/CAM software, which will restrict designers to the DFM criteria. Consequently, a notable reduction of development cycles can be achieved. The case study is following the hypothesis that current DFM methods do not improve product design in a manner claimed by the DFM method. The critical case was to identify DFA/DFM recommendations or program actions with repeated appearance in different sources. Repetitive DFM measures are identified, analyzed and it is shown how a modified DFM process can mitigate a non-fully integrated DFM approach.
Resumo:
Digital human modelling (DHM) has today matured from research into industrial application. In the automotive domain, DHM has become a commonly used tool in virtual prototyping and human-centred product design. While this generation of DHM supports the ergonomic evaluation of new vehicle design during early design stages of the product, by modelling anthropometry, posture, motion or predicting discomfort, the future of DHM will be dominated by CAE methods, realistic 3D design, and musculoskeletal and soft tissue modelling down to the micro-scale of molecular activity within single muscle fibres. As a driving force for DHM development, the automotive industry has traditionally used human models in the manufacturing sector (production ergonomics, e.g. assembly) and the engineering sector (product ergonomics, e.g. safety, packaging). In product ergonomics applications, DHM share many common characteristics, creating a unique subset of DHM. These models are optimised for a seated posture, interface to a vehicle seat through standardised methods and provide linkages to vehicle controls. As a tool, they need to interface with other analytic instruments and integrate into complex CAD/CAE environments. Important aspects of current DHM research are functional analysis, model integration and task simulation. Digital (virtual, analytic) prototypes or digital mock-ups (DMU) provide expanded support for testing and verification and consider task-dependent performance and motion. Beyond rigid body mechanics, soft tissue modelling is evolving to become standard in future DHM. When addressing advanced issues beyond the physical domain, for example anthropometry and biomechanics, modelling of human behaviours and skills is also integrated into DHM. Latest developments include a more comprehensive approach through implementing perceptual, cognitive and performance models, representing human behaviour on a non-physiologic level. Through integration of algorithms from the artificial intelligence domain, a vision of the virtual human is emerging.
Resumo:
In order to make good decisions about the design of information systems, an essential skill is to understand process models of the business domain the system is intended to support. Yet, little knowledge to date has been established about the factors that affect how model users comprehend the content of process models. In this study, we use theories of semiotics and cognitive load to theorize how model and personal factors influence how model viewers comprehend the syntactical information of process models. We then report on a four-part series of experiments, in which we examined these factors. Our results show that additional semantical information impedes syntax comprehension, and that theoretical knowledge eases syntax comprehension. Modeling experience further contributes positively to comprehension efficiency, measured as the ratio of correct answers to the time taken to provide answers. We discuss implications for practice and research.
Resumo:
In recent times, light gauge steel framed (LSF) structures, such as cold-formed steel wall systems, are increasingly used, but without a full understanding of their fire performance. Traditionally the fire resistance rating of these load-bearing LSF wall systems is based on approximate prescriptive methods developed based on limited fire tests. Very often they are limited to standard wall configurations used by the industry. Increased fire rating is provided simply by adding more plasterboards to these walls. This is not an acceptable situation as it not only inhibits innovation and structural and cost efficiencies but also casts doubt over the fire safety of these wall systems. Hence a detailed fire research study into the performance of LSF wall systems was undertaken using full scale fire tests and extensive numerical studies. A new composite wall panel developed at QUT was also considered in this study, where the insulation was used externally between the plasterboards on both sides of the steel wall frame instead of locating it in the cavity. Three full scale fire tests of LSF wall systems built using the new composite panel system were undertaken at a higher load ratio using a gas furnace designed to deliver heat in accordance with the standard time temperature curve in AS 1530.4 (SA, 2005). Fire tests included the measurements of load-deformation characteristics of LSF walls until failure as well as associated time-temperature measurements across the thickness and along the length of all the specimens. Tests of LSF walls under axial compression load have shown the improvement to their fire performance and fire resistance rating when the new composite panel was used. Hence this research recommends the use of the new composite panel system for cold-formed LSF walls. The numerical study was undertaken using a finite element program ABAQUS. The finite element analyses were conducted under both steady state and transient state conditions using the measured hot and cold flange temperature distributions from the fire tests. The elevated temperature reduction factors for mechanical properties were based on the equations proposed by Dolamune Kankanamge and Mahendran (2011). These finite element models were first validated by comparing their results with experimental test results from this study and Kolarkar (2010). The developed finite element models were able to predict the failure times within 5 minutes. The validated model was then used in a detailed numerical study into the strength of cold-formed thin-walled steel channels used in both the conventional and the new composite panel systems to increase the understanding of their behaviour under nonuniform elevated temperature conditions and to develop fire design rules. The measured time-temperature distributions obtained from the fire tests were used. Since the fire tests showed that the plasterboards provided sufficient lateral restraint until the failure of LSF wall panels, this assumption was also used in the analyses and was further validated by comparison with experimental results. Hence in this study of LSF wall studs, only the flexural buckling about the major axis and local buckling were considered. A new fire design method was proposed using AS/NZS 4600 (SA, 2005), NAS (AISI, 2007) and Eurocode 3 Part 1.3 (ECS, 2006). The importance of considering thermal bowing, magnified thermal bowing and neutral axis shift in the fire design was also investigated. A spread sheet based design tool was developed based on the above design codes to predict the failure load ratio versus time and temperature for varying LSF wall configurations including insulations. Idealised time-temperature profiles were developed based on the measured temperature values of the studs. This was used in a detailed numerical study to fully understand the structural behaviour of LSF wall panels. Appropriate equations were proposed to find the critical temperatures for different composite panels, varying in steel thickness, steel grade and screw spacing for any load ratio. Hence useful and simple design rules were proposed based on the current cold-formed steel structures and fire design standards, and their accuracy and advantages were discussed. The results were also used to validate the fire design rules developed based on AS/NZS 4600 (SA, 2005) and Eurocode Part 1.3 (ECS, 2006). This demonstrated the significant improvements to the design method when compared to the currently used prescriptive design methods for LSF wall systems under fire conditions. In summary, this research has developed comprehensive experimental and numerical thermal and structural performance data for both the conventional and the proposed new load bearing LSF wall systems under standard fire conditions. Finite element models were developed to predict the failure times of LSF walls accurately. Idealized hot flange temperature profiles were developed for non-insulated, cavity and externally insulated load bearing wall systems. Suitable fire design rules and spread sheet based design tools were developed based on the existing standards to predict the ultimate failure load, failure times and failure temperatures of LSF wall studs. Simplified equations were proposed to find the critical temperatures for varying wall panel configurations and load ratios. The results from this research are useful to both structural and fire engineers and researchers. Most importantly, this research has significantly improved the knowledge and understanding of cold-formed LSF loadbearing walls under standard fire conditions.
Resumo:
Background: Antibiotic overuse is a global public health issue that is influenced by several factors. The degree and prevalence of antibiotic overuse is difficult to measure directly. A more practical approach, such as the use of a psycho-social measurement instrument, might allow for the observation and assessment of patterns of antibiotic use. Study objective: The aim of this paper is to review the nature, validity, and reliability of measurement scales designed to measure factors associated with antibiotic misuse/overuse. Design: This study is descriptive and includes a systematic integration of the measurement scales used in the literature to measure factors associated with antibiotic misuse/overuse. The review included 70 international scientific publications from 1992 to 2010. Main results: Studies have presented scales to measure antibiotic misuse. However, the workup of these instruments is often not mentioned, or the scales are used with only early-phase validation, such as content or face validity. Other studies have discussed the reliability of these scales. However, the full validation process has not been discussed in any of the reviewed measurement scales. Conclusion: A reliable, fully validated measurement scale must be developed to assess the factors associated with the overuse of antibiotics. Identifying these factors will help to minimize the misuse of antibiotics.
Resumo:
Cyclic nitroxide radicals represent promising alternatives to the iodine-based redox mediator commonly used in dye-sensitized solar cells (DSSCs). To date DSSCs with nitroxide-based redox mediators have achieved energy conversion efficiencies of just over 5 % but efficiencies of over 15 % might be achievable, given an appropriate mediator. The efficacy of the mediator depends upon two main factors: it must reversibly undergo one-electron oxidation and it must possess an oxidation potential in a range of 0.600-0.850 V (vs. a standard hydrogen electrode (SHE) in acetonitrile at 25 °C). Herein, we have examined the effect that structural modifications have on the value of the oxidation potential of cyclic nitroxides as well as the reversibility of the oxidation process. These included alterations to the N-containing skeleton (pyrrolidine, piperidine, isoindoline, azaphenalene, etc.), as well as the introduction of different substituents (alkyl-, methoxy-, amino-, carboxy-, etc.) to the ring. Standard oxidation potentials were calculated using high-level ab initio methodology that was demonstrated to be very accurate (with a mean absolute deviation from experimental values of only 16 mV). An optimal value of 1.45 for the electrostatic scaling factor for UAKS radii in acetonitrile solution was obtained. Established trends in the values of oxidation potentials were used to guide molecular design of stable nitroxides with desired E° ox and a number of compounds were suggested for potential use as enhanced redox mediators in DSSCs. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Unmanned Aircraft Systems (UAS) describe a diverse range of aircraft that are operated without a human pilot on-board. Unmanned aircraft range from small rotorcraft, which can fit in the palm of your hand, through to fixed wing aircraft comparable in size to that of a commercial passenger jet. The absence of a pilot on-board allows these aircraft to be developed with unique performance capabilities facilitating a wide range of applications in surveillance, environmental management, agriculture, defence, and search and rescue. However, regulations relating to the safe design and operation of UAS first need to be developed before the many potential benefits from these applications can be realised. According to the International Civil Aviation Organization (ICAO), a Risk Management Process (RMP) should support all civil aviation policy and rulemaking activities (ICAO 2009). The RMP is described in International standard, ISO 31000:2009 (ISO, 2009a). This standard is intentionally generic and high-level, providing limited guidance on how it can be effectively applied to complex socio-technical decision problems such as the development of regulations for UAS. Through the application of principles and tools drawn from systems philosophy and systems engineering, this thesis explores how the RMP can be effectively applied to support the development of safety regulations for UAS. A sound systems-theoretic foundation for the RMP is presented in this thesis. Using the case-study scenario of a UAS operation over an inhabited area and through the novel application of principles drawn from general systems modelling philosophy, a consolidated framework of the definitions of the concepts of: safe, risk and hazard is made. The framework is novel in that it facilitates the representation of broader subjective factors in an assessment of the safety of a system; describes the issues associated with the specification of a system-boundary; makes explicit the hierarchical nature of the relationship between the concepts and the subsequent constraints that exist between them; and can be evaluated using a range of analytic or deliberative modelling techniques. Following the general sequence of the RMP, the thesis explores the issues associated with the quantified specification of safety criteria for UAS. A novel risk analysis tool is presented. In contrast to existing risk tools, the analysis tool presented in this thesis quantifiably characterises both the societal and individual risk of UAS operations as a function of the flight path of the aircraft. A novel structuring of the risk evaluation and risk treatment decision processes is then proposed. The structuring is achieved through the application of the Decision Support Problem Technique; a modelling approach that has been previously used to effectively model complex engineering design processes and to support decision-making in relation to airspace design. The final contribution made by this thesis is in the development of an airworthiness regulatory framework for civil UAS. A novel "airworthiness certification matrix" is proposed as a basis for the definition of UAS "Part 21" regulations. The outcome airworthiness certification matrix provides a flexible, systematic and justifiable method for promulgating airworthiness regulations for UAS. In addition, an approach for deriving "Part 1309" regulations for UAS is presented. In contrast to existing approaches, the approach presented in this thesis facilitates a traceable and objective tailoring of system-level reliability requirements across the diverse range of UAS operations. The significance of the research contained in this thesis is clearly demonstrated by its practical real world outcomes. Industry regulatory development groups and the Civil Aviation Safety Authority have endorsed the proposed airworthiness certification matrix. The risk models have also been used to support research undertaken by the Australian Department of Defence. Ultimately, it is hoped that the outcomes from this research will play a significant part in the shaping of regulations for civil UAS, here in Australia and around the world.