998 resultados para Density Match
Resumo:
High-density inductively coupled plasma (ICP)-assisted self-assembly of the ordered arrays of various carbon nanostructures (NS) for the electron field emission applications is reported. Carbon-based nano-particles, nanotips, and pyramid-like structures, with the controllable shape, ordering, and areal density are grown under remarkably low process temperatures (260-350 °C) and pressures (below 0.1 Torr), on the same Ni-based catalyst layers, in a DC bias-controlled floating temperature regime. A high degree of positional and directional ordering, elevated sp2 content, and a well-structured graphitic morphology are achieved without the use of pre-patterned or externally heated substrates.
Resumo:
Manipulation of a single nanoparticle in the near-substrate areas of high-density plasmas of low-temperature glow discharges is studied. It is shown that the nanoparticles can be efficiently manipulated by the thermophoretic force controlled by external heating of the substrate stage. Particle deposition onto or repulsion from nanostructured carbon surfaces critically depends on the values of the neutral gas temperature gradient in the near-substrate areas, which is directly measured in situ in different heating regimes by originally developed temperature gradient probe. The measured values of the near-surface temperature gradient are used in the numerical model of nanoparticle dynamics in a variable-length presheath. Specific conditions enabling the nanoparticle to overcome the repulsive potential and deposit on the substrate during the discharge operation are investigated. The results are relevant to fabrication of various nanostructured films employing structural incorporation of the plasma-grown nanoparticles, in particular, to nanoparticle deposition in the plasma-enhanced chemical-vapor deposition of carbon nanostructures in hydrocarbon-based plasmas.
Resumo:
Operation regimes, plasma parameters, and applications of the low-frequency (∼500 kHz) inductively coupled plasma (ICP) sources with a planar external coil are investigated. It is shown that highly uniform, high-density (ne∼9×1012 cm-3) plasmas can be produced in low-pressure argon discharges with moderate rf powers. The low-frequency ICP sources operate in either electrostatic (E) or electromagnetic (H) regimes in a wide pressure range without any Faraday shield or an external multipolar magnetic confinement, and exhibit high power transfer efficiency, and low circuit loss. In the H mode, the ICP features high level of uniformity over large processing areas and volumes, low electron temperatures, and plasma potentials. The low-density, highly uniform over the cross-section, plasmas with high electron temperatures and plasma and sheath potentials are characteristic to the electrostatic regime. Both operation regimes offer great potential for various plasma processing applications. As examples, the efficiency of the low-frequency ICP for steel nitriding and plasma-enhanced chemical vapor deposition of hydrogenated diamond-like carbon (DLC) films, is demonstrated. It appears possible to achieve very high nitriding rates and dramatically increase micro-hardness and wear resistance of the AISI 304 stainless steel. It is also shown that the deposition rates and mechanical properties of the DLC films can be efficiently controlled by selecting the discharge operating regime.
Resumo:
The influence of ion current density on the thickness of coatings deposited in a vacuum arc setup has been investigated to optimize the coating porosity. A planar probe was used to measure the ion current density distribution across plasma flux. A current density from 20 to 50 A/m2 was obtained, depending on the probe position relative to the substrate center. TiN coatings were deposited onto the cutting inserts placed at different locations on the substrate, and SEM was used to characterize the surfaces of the coatings. It was found that lowdensity coatings were formed at the decreased ion current density. A quantitative dependence of the coating thickness on the ion current density in the range of 20-50 A/m2 were obtained for the films deposited at substrate bias of 200 V and nitrogen pressure 0.1 Pa, and the coating porosity was calculated. The coated cutting inserts were tested by lathe machining of the martensitic stainless steel AISI 431. The results may be useful for controlling ion flux distribution over large industrial-scale substrates.
Resumo:
We report on charge transport and density of trap states (trap DOS) in ambipolar diketopyrrolopyrrole-benzothiadiazole copolymer thin-film transistors. This semiconductor possesses high electron and hole field-effect mobilities of up to 0.6 cm 2/V-s. Temperature and gate-bias dependent field-effect mobility measurements are employed to extract the activation energies and trap DOS to understand its unique high mobility balanced ambipolar charge transport properties. The symmetry between the electron and hole transport characteristics, parameters and activation energies is remarkable. We believe that our work is the first charge transport study of an ambipolar organic/polymer based field-effect transistor with room temperature mobility higher than 0.1 cm 2/V-s in both electrons and holes.
Resumo:
Quantifying the impact of biochemical compounds on collective cell spreading is an essential element of drug design, with various applications including developing treatments for chronic wounds and cancer. Scratch assays are a technically simple and inexpensive method used to study collective cell spreading; however, most previous interpretations of scratch assays are qualitative and do not provide estimates of the cell diffusivity, D, or the cell proliferation rate,l. Estimating D and l is important for investigating the efficacy of a potential treatment and provides insight into the mechanism through which the potential treatment acts. While a few methods for estimating D and l have been proposed, these previous methods lead to point estimates of D and l, and provide no insight into the uncertainty in these estimates. Here, we compare various types of information that can be extracted from images of a scratch assay, and quantify D and l using discrete computational simulations and approximate Bayesian computation. We show that it is possible to robustly recover estimates of D and l from synthetic data, as well as a new set of experimental data. For the first time, our approach also provides a method to estimate the uncertainty in our estimates of D and l. We anticipate that our approach can be generalized to deal with more realistic experimental scenarios in which we are interested in estimating D and l, as well as additional relevant parameters such as the strength of cell-to-cell adhesion or the strength of cell-to-substrate adhesion.
Resumo:
This paper details the implementation and trialling of a prototype in-bucket bulk density monitor on a production dragline. Bulk density information can provide feedback to mine planning and scheduling to improve blasting and consequently facilitating optimal bucket sizing. The bulk density measurement builds upon outcomes presented in the AMTC2009 paper titled ‘Automatic In-Bucket Volume Estimation for Dragline Operations’ and utilises payload information from a commercial dragline monitor. While the previous paper explains the algorithms and theoretical basis for the system design and scaled model testing this paper will focus on the full scale implementation and the challenges involved.
Resumo:
Mismatch negativity (MMN) is a component of the event-related potential elicited by deviant auditory stimuli. It is presumed to index pre-attentive monitoring of changes in the auditory environment. MMN amplitude is smaller in groups of individuals with schizophrenia compared to healthy controls. We compared duration-deviant MMN in 16 recent-onset and 19 chronic schizophrenia patients versus age- and sex-matched controls. Reduced frontal MMN was found in both patient groups, involved reduced hemispheric asymmetry, and was correlated with Global Assessment of Functioning (GAF) and negative symptom ratings. A cortically-constrained LORETA analysis, incorporating anatomical data from each individual's MRI, was performed to generate a current source density model of the MMN response over time. This model suggested MMN generation within a temporal, parietal and frontal network, which was right hemisphere dominant only in controls. An exploratory analysis revealed reduced CSD in patients in superior and middle temporal cortex, inferior and superior parietal cortex, precuneus, anterior cingulate, and superior and middle frontal cortex. A region of interest (ROI) analysis was performed. For the early phase of the MMN, patients had reduced bilateral temporal and parietal response and no lateralisation in frontal ROIs. For late MMN, patients had reduced bilateral parietal response and no lateralisation in temporal ROIs. In patients, correlations revealed a link between GAF and the MMN response in parietal cortex. In controls, the frontal response onset was 17 ms later than the temporal and parietal response. In patients, onset latency of the MMN response was delayed in secondary, but not primary, auditory cortex. However amplitude reductions were observed in both primary and secondary auditory cortex. These latency delays may indicate relatively intact information processing upstream of the primary auditory cortex, but impaired primary auditory cortex or cortico-cortical or thalamo-cortical communication with higher auditory cortices as a core deficit in schizophrenia.
Resumo:
Various forms of hydrogenated graphene have been produced to date by several groups, while the synthesis of pure graphane has not been achieved yet. The study of the interface between graphane, in all its possible hydrogenation configurations, and catalyst metal surfaces can be pivotal to assess the feasibility of direct CVD growth methods for this material. We investigated the adhesion of graphane to a Cu(111) surface by adopting the vdW-DF2-C09 exchange-correlation functional, which is able to describe dispersion forces. The results are further compared with the PBE and the LDA exchange-correlation functionals. We calculated the most stable geometrical configurations of the slab/graphane interface and evaluated how graphane's geometrical parameters are modified. We show that dispersion forces play an important role in the slab/graphane adhesion. Band structure calculations demonstrated that in the presence of the interaction with copper, the band gap of graphane is not only preserved, but also enlarged, and this increase can be attributed to the electronic charge accumulated at the interface. We calculated a substantial energy barrier at the interface, suggesting that CVD graphane films might act as reliable and stable insulating thin coatings, or also be used to form compound layers in conjunction with metals and semiconductors.
Resumo:
This paper proposes a simulation-based density estimation technique for time series that exploits information found in covariate data. The method can be paired with a large range of parametric models used in time series estimation. We derive asymptotic properties of the estimator and illustrate attractive finite sample properties for a range of well-known econometric and financial applications.
Resumo:
The successful establishment and growth of mixed-species forest plantations requires that complementary or facilitatory species be identified. This can be difficult in many tropical areas because the growth characteristics of endemic species are often unknown, particularly when grown at potentially higher densities in plantations than in natural forests. Here, we investigate whether wood density is a useful and readily accessible trait for choosing complementary species for mixed species plantations. Wood density represents the carbon investment per unit volume of stem with a trade-off generally found between fast (low wood density) and slow (high wood density) growing species. To do this, we use data collected from 18 highly diverse mixed species plantations (4–23 mostly native species) aged from 6 to 11 years at the time of data collection located on Leyte Island, Philippines. We found significant negative correlations between wood densities and the height of the most abundant species, as well as with measures of overall stand growth and tree diameter size distribution. Not only do species with denser woods have slower growth rates, but also mixed-species plantations with higher average wood density and higher stem density were also less productive, at least in these young plantations. Similarly, stands with a high diversity in wood densities were less productive. There is growing interest in making greater use of native multi-species mixtures in smallholder and community planting programs in the tropics, and our results show databases of wood density values may help improve their design. In the early development stages of plantations, canopy closure and rapid height growth are usually key silvicultural targets, and wood density values can predict the rapid height development of species. If plantations are being grown for the livelihood of small landholders then the best target is to choose some species with different wood densities. This allows an early harvest of low-wood density species for early income, and will also reduce competition for slower growing trees with higher wood densities for later income generation.
Resumo:
We report a more accurate method to determine the density of trap states in a polymer field-effect transistor. In the approach, we describe in this letter, we take into consideration the sub-threshold behavior in the calculation of the density of trap states. This is very important since the sub-threshold regime of operation extends to fairly large gate voltages in these disordered semiconductor based transistors. We employ the sub-threshold drift-limited mobility model (for sub-threshold response) and the conventional linear mobility model for above threshold response. The combined use of these two models allows us to extract the density of states from charge transport data much more accurately. We demonstrate our approach by analyzing data from diketopyrrolopyrrole based co-polymer transistors with high mobility. This approach will also work well for other disordered semiconductors in which sub-threshold conduction is important.
Resumo:
Objectives Directly measuring disease incidence in a population is difficult and not feasible to do routinely. We describe the development and application of a new method of estimating at a population level the number of incident genital chlamydia infections, and the corresponding incidence rates, by age and sex using routine surveillance data. Methods A Bayesian statistical approach was developed to calibrate the parameters of a decision-pathway tree against national data on numbers of notifications and tests conducted (2001-2013). Independent beta probability density functions were adopted for priors on the time-independent parameters; the shape parameters of these beta distributions were chosen to match prior estimates sourced from peer-reviewed literature or expert opinion. To best facilitate the calibration, multivariate Gaussian priors on (the logistic transforms of) the time-dependent parameters were adopted, using the Matérn covariance function to favour changes over consecutive years and across adjacent age cohorts. The model outcomes were validated by comparing them with other independent empirical epidemiological measures i.e. prevalence and incidence as reported by other studies. Results Model-based estimates suggest that the total number of people acquiring chlamydia per year in Australia has increased by ~120% over 12 years. Nationally, an estimated 356,000 people acquired chlamydia in 2013, which is 4.3 times the number of reported diagnoses. This corresponded to a chlamydia annual incidence estimate of 1.54% in 2013, increased from 0.81% in 2001 (~90% increase). Conclusions We developed a statistical method which uses routine surveillance (notifications and testing) data to produce estimates of the extent and trends in chlamydia incidence.
Resumo:
This work examined the suitability of the PAGAT gel dosimeter for use in dose distribution measurements around high-density implants. An assessment of the gels reactivity with various metals was performed and no corrosive effects were observed. An artefact reduction technique was also investigated in order to minimise scattering of the laser light in the optical CT scans. The potential for attenuation and backscatter measurements using this gel dosimeter were examined for a temporary tissue expander's internal magnetic port.