897 resultados para Degree in mathematics
Resumo:
This study addresses the question of teacher educators’ conceptions of mathematics teacher education (MTE) in teacher colleges in Tanzania, and their thoughts on how to further develop it. The tension between exponents of content as opposed to pedagogy has continued to cause challenging conceptual differences, which also influences what teacher educators conceive as desirable in the development of this domain. This tension is connected to the dissatisfaction of parents and teachers with the failure of school mathematics. From this point of view, the overall aim was to identify and describe teacher educators’ various conceptions of MTE. Inspired by the debate among teacher educators about what the balance should be between subject matter and pedagogical knowledge, it was important to look at the theoretical faces of MTE. The theoretical background involved the review of what is visible in MTE, what is yet to be known and the challenges within the practice. This task revealed meanings, perspectives in MTE, professional development and assessment. To do this, two questions were asked, to which no clear solutions satisfactorily existed. The questions to guide the investigation were, firstly, what are teacher educators’ conceptions of MTE, and secondly, what are teacher educators’ thoughts on the development of MTE? The two questions led to the choice of phenomenography as the methodological approach. Against the guiding questions, 27 mathematics teacher educators were interviewed in relation to the first question, while 32 responded to an open-ended questionnaire regarding question two. The interview statements as well as the questionnaire responses were coded and analysed (classified). The process of classification generated patterns of qualitatively different ways of seeing MTE. The results indicate that MTE is conceived as a process of learning through investigation, fostering inspiration, an approach to learning with an emphasis on problem solving, and a focus on pedagogical knowledge and skills in the process of teaching and learning. In addition, the teaching and learning of mathematics is seen as subject didactics with a focus on subject matter and as an organized integration of subject matter, pedagogical knowledge and some school practice; and also as academic content knowledge in which assessment is inherent. The respondents also saw the need to build learner-educator relationships. Finally, they emphasized taking advantage of teacher educators’ neighbourhood learning groups, networking and collaboration as sustainable knowledge and skills sharing strategies in professional development. Regarding desirable development, teacher educators’ thoughts emphasised enhancing pedagogical knowledge and subject matter, and to be determined by them as opposed to conventional top-down seminars and workshops. This study has revealed various conceptions and thoughts about MTE based on teacher educators´ diverse history of professional development in mathematics. It has been reasonably substantiated that some teacher educators teach school mathematics in the name of MTE, hardly distinguishing between the role and purpose of the two in developing a mathematics teacher. What teacher educators conceive as MTE and what they do regarding the education of teachers of mathematics revealed variations in terms of seeing the phenomenon of interest. Within limits, desirable thoughts shed light on solutions to phobias, and in the same way low self-esteem and stigmatization call for the building of teacher educator-student teacher relationships.
Resumo:
Speed, uncertainty and complexity are increasing in the business world all the time. When knowledge and skills become quickly irrelevant, new challenges are set for information technology (IT) education. Meta-learning skills – learning how to learn rapidly - and innovation skills have become more essential than single technologies or other specific issues. The drastic changes in the information and communications technology (ICT) sector have caused a need to reconsider how IT Bachelor education in Universities of Applied Sciences should be organized and employed to cope with the change. The objective of the study was to evaluate how a new approach to IT Bachelor education, the ICT entrepreneurship study path (ICT-ESP) fits IT Bachelor education in a Finnish University of Applied Sciences. This kind of educational arrangement has not been employed elsewhere in the context of IT Bachelor education. The study presents the results of a four-year period during which IT Bachelor education was renewed in a Finnish University of Applied Sciences. The learning environment was organized into an ICT-ESP based on Nonaka’s knowledge theory and Kolb’s experiental learning. The IT students who studied in the ICT-ESP established a cooperative and learned ICT by running their cooperative at the University of Applied Sciences. The students (called team entrepreneurs) studied by reading theory in books and other sources of explicit information, doing projects for their customers, and reflecting in training sessions on what was learnt by doing and by studying the literature. Action research was used as the research strategy in this study. Empirical data was collected via theme-based interviews, direct observation, and participative observation. Grounded theory method was utilized in the data analysis and the theoretical sampling was used to guide the data collection. The context of the University of Applied Sciences provided a good basis for fostering team entrepreneurship. However, the results showed that the employment of the ICT-ESP did not fit into the IT Bachelor education well enough. The ICT-ESP was cognitively too tough for the team entrepreneurs because they had two different set of rules to follow in their studies. The conventional courses engaged lot of energy which should have been spent for professional development in the ICT-ESP. The amount of competencies needed in the ICT-ESP for professional development was greater than those needed for any other ways of studying. The team entrepreneurs needed to develop skills in ICT, leadership and self-leadership, team development and entrepreneurship skills. The entrepreneurship skills included skills on marketing and sales, brand development, productization, and business administration. Considering the three-year time the team entrepreneurs spent in the ICT-ESP, the challenges were remarkable. Changes to the organization of IT Bachelor education are also suggested in the study. At first, it should be admitted that the ICT-ESP produces IT Bachelors with a different set of competencies compared to the conventional way of educating IT Bachelors. Secondly, the number of courses on general topics in mathematics, physics, and languages for team entrepreneurs studying in the ICTESP should be reconsidered and the conventional course-based teaching of the topics should be reorganized to support the team coaching process of the team entrepreneurs with their practiceoriented projects. Third, the upcoming team entrepreneurs should be equipped with relevant information about the ICT-ESP and what it would require in practice to study as a team entrepreneur. Finally, the upcoming team entrepreneurs should be carefully selected before they start in the ICT-ESP to have a possibility to eliminate solo players and those who have a too romantic view of being a team entrepreneur. The results gained in the study provided answers to the original research questions and the objectives of the study were met. Even though the IT degree programme was terminated during the research process, the amount of qualitative data gathered made it possible to justify the interpretations done.
Resumo:
This research studioo the effect of integrated instruction in mathematics and~ science on student achievement in and attitude towards both mathematics and science. A group of grade 9 academic students received instruction in both science and mathematics in an integrated program specifically developed for the purposes of the research. This group was compared to a control group that had received science and mathematics instruction in a traditional, nonintegrated program. The findings showed that in all measures of attitude, there was no significant difference between the students who participated in the integrated science and mathematics program and those who participated in a traditional science and mathematics program. The findings also revealed that integration did improve achievement on some of the measures used. The performance on mathematics open-ended problem-solving tasks improved after participation in the integrated program, suggesting that the integrated students were better able to apply their understanding of mathematics in a real-life context. The performance on the final science exam was also improved for the integrated group. Improvement was not noted on the other measures, which included EQAO scores and laboratory practical tasks. These results raise the issue of the suitability of the instruments used to gauge both achievement and attitude. The accuracy and suitability of traditional measures of achievement are considered. It is argued that they should not necessarily be used as the measure of the value of integrated instruction in a science and mathematics classroom.
Resumo:
The crisis in the foundations of mathematics is a conceptual crisis. I suggest that we embrace the crisis and adopt a pluralist position towards foundations. There are many foundations in mathematics. However, ‘many foundations’ (for one building) is an oxymoron. Therefore, we shift vocabulary to say that mathematics, as one discipline, is composed of many different theories. This entails that there are no absolute mathematical truths, only truths within a theory. There is no unified, consistent ontology, only ontology within a theory.
Resumo:
This report is a review of Darwin`s classical theory of bodily tides in which we present the analytical expressions for the orbital and rotational evolution of the bodies and for the energy dissipation rates due to their tidal interaction. General formulas are given which do not depend on any assumption linking the tidal lags to the frequencies of the corresponding tidal waves (except that equal frequency harmonics are assumed to span equal lags). Emphasis is given to the cases of companions having reached one of the two possible final states: (1) the super-synchronous stationary rotation resulting from the vanishing of the average tidal torque; (2) capture into the 1:1 spin-orbit resonance (true synchronization). In these cases, the energy dissipation is controlled by the tidal harmonic with period equal to the orbital period (instead of the semi-diurnal tide) and the singularity due to the vanishing of the geometric phase lag does not exist. It is also shown that the true synchronization with non-zero eccentricity is only possible if an extra torque exists opposite to the tidal torque. The theory is developed assuming that this additional torque is produced by an equatorial permanent asymmetry in the companion. The results are model-dependent and the theory is developed only to the second degree in eccentricity and inclination (obliquity). It can easily be extended to higher orders, but formal accuracy will not be a real improvement as long as the physics of the processes leading to tidal lags is not better known.
Resumo:
In 1983, Chvatal, Trotter and the two senior authors proved that for any Delta there exists a constant B such that, for any n, any 2-colouring of the edges of the complete graph K(N) with N >= Bn vertices yields a monochromatic copy of any graph H that has n vertices and maximum degree Delta. We prove that the complete graph may be replaced by a sparser graph G that has N vertices and O(N(2-1/Delta)log(1/Delta)N) edges, with N = [B`n] for some constant B` that depends only on Delta. Consequently, the so-called size-Ramsey number of any H with n vertices and maximum degree Delta is O(n(2-1/Delta)log(1/Delta)n) Our approach is based on random graphs; in fact, we show that the classical Erdos-Renyi random graph with the numerical parameters above satisfies a stronger partition property with high probability, namely, that any 2-colouring of its edges contains a monochromatic universal graph for the class of graphs on n vertices and maximum degree Delta. The main tool in our proof is the regularity method, adapted to a suitable sparse setting. The novel ingredient developed here is an embedding strategy that allows one to embed bounded degree graphs of linear order in certain pseudorandom graphs. Crucial to our proof is the fact that regularity is typically inherited at a scale that is much finer than the scale at which it is assumed. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Infrared spectroscopy is one of the most widely used techniques for measurement of conversion degree in dental composites. However, to obtain good quality spectra and quantitative analysis from spectral data, appropriate expertise and knowledge of the technique are mandatory. This paper presents important details to use infrared spectroscopy for determination of the conversion degree.
Resumo:
Research on the influence of multiple representations in mathematics education gained new momentum when personal computers and software started to become available in the mid-1980s. It became much easier for students who were not fond of algebraic representations to work with concepts such as function using graphs or tables. Research on how students use such software showed that they shaped the tools to their own needs, resulting in an intershaping relationship in which tools shape the way students know at the same time the students shape the tools and influence the design of the next generation of tools. This kind of research led to the theoretical perspective presented in this paper: knowledge is constructed by collectives of humans-with-media. In this paper, I will discuss how media have shaped the notions of problem and knowledge, and a parallel will be developed between the way that software has brought new possibilities to mathematics education and the changes that the Internet may bring to mathematics education. This paper is, therefore, a discussion about the future of mathematics education. Potential scenarios for the future of mathematics education, if the Internet becomes accepted in the classroom, will be discussed. © FIZ Karlsruhe 2009.
Resumo:
Mathematics education in Brazil, if we consider what one may call the scientific phase, is about 30 years old. The papers for this special issue focus mainly on this period. During these years, many trends have emerged in mathematics education to address the complex problems facing Brazilian society. However, most Brazilian mathematics educators feel that the separation of research into trends is a theoretical idealization that does not respond to the dynamics of the problems we face. We raise the conjecture that the complexity of Brazilian society, where pockets of wealth coexist with the most shocking poverty, has contributed to the adoption and generation of different strands in mathematics education, crossing the boundaries between trends. At a more micro level, we also raise the conjecture that Brazilian trends in research are interwoven because of the way that Brazilian mathematics educators have experienced the process of globalization over these 30 years. This tapestry of trends is a predominant characteristic of mathematics education in Brazil. © FIZ Karlsruhe 2009.
Resumo:
The number of papers on History of Mathematics Education presented at EBRAPEM (Brazilian Meeting of Graduate Students in Mathematics Education) has increased significantly between 2003 and 2008. This article presents a study with the aim of identifying themes, periods in focus, and sources and theoretical and methodological references used by the authors of the papers on History of Mathematics Education published in the proceedings of VII, VIII, IX, X, XI and XII EBRAPEM. The study indicates that the approach of ongoing research in History of Mathematics Education in Brazil has been similar to the approach of research in History of Education in general. However, the institutional separation between these two areas of investigation is noted as a factor rendering communication between both groups of researchers difficult.
Resumo:
This action research study of twenty students in my sixth grade mathematics classroom examines the implementation of summarization strategies. Students were taught how to summarize concepts and how to explain their thinking in different ways to the teacher and their peers. Through analysis of students’ summaries of concepts from lessons that I taught, tests scores, and student journals and interviews, I discovered that summarizing mathematical concepts offers students an engaging opportunity to better understand those concepts and render that understanding more visible to the teacher. This analysis suggests that non-traditional summarization, such as verbal and written strategies, and strategies involving movement and discussions, can be useful in mathematics classrooms to improve student understanding, engagement in learning tasks, and as a form of formative assessment.
Resumo:
Using path analysis, the present investigation was done to clarify possible causal linkages among general scholastic aptitude, academic achievement in mathematics, self-concept of ability, and performance on a mathematics examination. Subjects were 122 eighth-grade students who completed a mathematics examination as well as a measure of self-concept of ability. Aptitude and achievement measures were obtained from school records. Analysis showed sex differences in prediction of performance on the mathematics examination. For boys, this performance could be predicted from scholastic aptitude and previous achievement in mathematics. For girls, performance only could be predicted from previous achievement in mathematics. These results indicate that the direction, strength, and magnitude of relations among these variables differed for boys and girls, while mean levels of performance did not.
Resumo:
MiTEP, the Michigan Teacher Excellence Program, provides current teachers the opportunity to partner with Michigan Technological University to obtain graduate credit towards a Master’s degree in applied science education. In exchange, the university collects data on the implementation of inquiry and earth science concepts into science classrooms. This paper documents my experience within this program, including how it has affected my personal and professional learning.
Resumo:
Schoolbooks convey not only school-relevant knowledge; they also influence the development of stereotypes about different social groups. Particularly during the 1970s and 1980s, many studies analysed schoolbooks and criticised the overall predominance of male persons and of traditional role allocations. Since that time, women’s and men’s occupations and social functions have changed considerably. The present research investigated gender portrayals in schoolbooks for German and mathematics that were recently published in Germany. We examined the proportions of female and male persons in pictures and texts and categorized their activities, occupational and parental roles. Going beyond previous studies, we added two criteria: the use of gender-fair language and the spatial arrangements of persons in pictures. Our results show that schoolbooks for German contained almost balanced depictions of girls and boys, whereas women were less frequently shown than men. In mathematics books, males outnumbered females in general. Across both types of books, female and male persons were engaged in many different activities, not only gendertyped ones; however, male persons were more often described via their profession than females. Use of gender-fair language has found its way into schoolbooks but is not used consistently. Books for German were more gender fair in terms of linguistic forms than books for mathematics. For spatial arrangements, we found no indication for gender biases. The results are discussed with a focus on how schoolbooks can be optimized to contribute to gender equality.
Resumo:
The subject of Construction of Structures I studies, from a constructive point of view and taking into account current legislation, reinforced concrete structures used in buildings, through the acquisition of knowledge and construction criteria required in the profession of a Technical Architect. The contents acquired in this course are essential for further professional development of technicians and are closely related to many of the subjects taught in the same or other courses of the Degree in Technical Architecture at the University of Alicante. The aim of this paper is to present, analyze and discuss the development of a new methodology proposed in the mentioned subject, as it supposed an important change in the traditional way of teaching Construction and Structures I. In order to incorporate new teaching tools in 2013-2014, the course has been implemented by using a Moodle software tool to promote blended learning with online exercises. Our Moodle community allows collaborative work within an open-source platform where teachers and students share a new and personalized learning environment. Students are easily used to the interface and the platform, value the constant connection with teachers or other fellows and completely agree with the possibility of making questions or share documents 24 hours a day. The proposed methodology consists of lectures and practical classes. In the lectures, the basics of each topic are discussed; class attendance, daily study and conducting scheduled exercises are indispensable. Practical classes allow to consolidate the knowledge gained in theory classes by solving professional exercises and actual construction problems related to structures, that shall be compulsorily delivered online. So, after the correction of the teacher and the subsequent feedback of students, practical exercises ensure lifelong learning of the student, who can download any kind of material at any time (constructive details, practical exercises and even corrected exams). Regarding the general evaluation system, goals achievement is assessed on an ongoing basis (65% of the final mark) along the course through written and graphic evidences in person and online, as well as a individual development of a workbook. In all cases, the acquisition of skills, the ability to synthesize, the capacity of logical and critical thinking are assessed. The other 35 % of the mark is evaluated by a complementary graphic exam. Participation in the computing platform is essential and the student is required to do and present, at least 90% of the practices proposed. Those who do not comply with the practices in each specific date could not be assessed continuously and may only choose the final exam. In conclusion, the subject of Construction of Structures I is essential in the development of the regulated profession of Technical Architect as they are considered, among other professional profiles, as specialists in construction of building structures. The use of a new communication platform and online teaching allows the acquisition of knowledge and constructive approaches in a continuous way, with a more direct and personal monitoring by the teacher that has been highly appreciated by almost 100% of the students. Ultimately, it is important to say that the use of Moodle in this subject is a very interesting tool, which was really well welcome by students in one of the densest and important subjects of the Degree of Technical Architecture.