996 resultados para DISCOVERY INVESTIGATIONS
Resumo:
Frequency Domain Spectroscopy (FDS) is successfully being used to assess the insulation condition of oil filled power transformers. However, it has to date only been implemented on de-energized transformers, which requires the transformers to be shut down for an extended period which can result in significant costs. To solve this issue, a method of implementing FDS under energized condition is proposed here. A chirp excitation waveform is used to replace the conventional sinusoidal waveform to reduce the measurement time in this method. Investigation of the dielectric response under the influence of a high voltage stress at power frequency is reported based on experimental results. To further understand the insulation ageing process, the geometric capacitance effect is removed to enhance the detection of the ageing signature. This enhancement enables the imaginary part of admittance to be used as a new indicator to assess the ageing status of the insulation.
Resumo:
Australia has a significantly higher suicide rate than England. Rather than accepting that this ‘statistical fact’ is a direct reflection of some positivist truth, this paper begins with the premise that how suicide is counted depends upon what counts as suicide. This study involves semi-structured interviews with coroners both in Australia and England, as well as observations at inquests. Important differences between the two coronial systems include: first, quite different logics of operation; second, the burden of proof for reaching a finding of suicide is significantly higher in England; and third, the presence of family members at English inquests results in far greater pressure being brought to bear upon coroners. These combined factors result in a reduced likelihood of English coroners reaching a finding of suicide. The conclusions are twofold. First, this research supports existing criticisms of comparative suicide statistics. Second, this research adds theoretical weight to criticisms of positivist analyses of social phenomena.
Resumo:
An investigation into the spatial distribution of road traffic noise levels on a balcony is conducted. A balcony constructed to a special acoustic design due to its elevation above an 8 lane motorway is selected for detailed measurements. The as-constructed balcony design includes solid parapets, side walls, ceiling shields and highly absorptive material placed on the ceiling. Road traffic noise measurements are conducted spatially using a five channel acoustic analyzer, where four microphones are located at various positions within the balcony space and one microphone placed outside the parapet at a reference position. Spatial distributions in both vertical and horizontal planes are measured. A theoretical model and prediction configuration is presented that assesses the acoustic performance of the balcony under existing traffic flow conditions. The prediction model implements a combined direct path, specular reflection path and diffuse reflection path utilizing image source and radiosity techniques. Results obtained from the prediction model are presented and compared to the measurement results. The predictions are found to correlate well with measurements with some minor differences that are explained. It is determined that the prediction methodology is acceptable to assess a wider range of street and balcony configuration scenarios.
Resumo:
This research measured particle and gaseous emissions from ships and trains operating within the Port of Brisbane, and explored their influence on ambient air composition at a downwind suburban measurement site. The ship and train emission factor investigations resulted in the development of novel measurement techniques which permit the quantification of particle and gaseous emission factors using samples collected from post-emission exhaust plumes. The urban influence investigation phase of the project produced a new approach to identifying influences from ship emissions.
Resumo:
Angiogenesis is indispensable for solid tumor expansion, and thus it has become a major target of cancer research and anti-cancer therapies. Deciphering the arcane actions of various cell populations during tumor angiogenesis requires sophisticated research models, which could capture the dynamics and complexity of the process. There is a continuous need for improvement of existing research models, which engages interdisciplinary approaches of tissue engineering with life sciences. Tireless efforts to develop a new model to study tumor angiogenesis result in innovative solutions, which bring us one step closer to decipher the dubious nature of cancer. This review aims to overview the recent developments, current limitations and future challenges in three-dimensional tissue-engineered models for the study of tumor angiogenesis and for the purpose of elucidating novel targets aimed at anti-cancer drug discovery.
Resumo:
Evolutionary algorithms are playing an increasingly important role as search methods in cognitive science domains. In this study, methodological issues in the use of evolutionary algorithms were investigated via simulations in which procedures were systematically varied to modify the selection pressures on populations of evolving agents. Traditional roulette wheel, tournament, and variations of these selection algorithms were compared on the “needle-in-a-haystack” problem developed by Hinton and Nowlan in their 1987 study of the Baldwin effect. The task is an important one for cognitive science, as it demonstrates the power of learning as a local search technique in smoothing a fitness landscape that lacks gradient information. One aspect that has continued to foster interest in the problem is the observation of residual learning ability in simulated populations even after long periods of time. Effective evolutionary algorithms balance their search effort between broad exploration of the search space and in-depth exploitation of promising solutions already found. Issues discussed include the differential effects of rank and proportional selection, the tradeoff between migration of populations towards good solutions and maintenance of diversity, and the development of measures that illustrate how each selection algorithm affects the search process over generations. We show that both roulette wheel and tournament algorithms can be modified to appropriately balance search between exploration and exploitation, and effectively eliminate residual learning in this problem.
Resumo:
Collections of biological specimens are fundamental to scientific understanding and characterization of natural diversity - past, present and future. This paper presents a system for liberating useful information from physical collections by bringing specimens into the digital domain so they can be more readily shared, analyzed, annotated and compared. It focuses on insects and is strongly motivated by the desire to accelerate and augment current practices in insect taxonomy which predominantly use text, 2D diagrams and images to describe and characterize species. While these traditional kinds of descriptions are informative and useful, they cannot cover insect specimens "from all angles" and precious specimens are still exchanged between researchers and collections for this reason. Furthermore, insects can be complex in structure and pose many challenges to computer vision systems. We present a new prototype for a practical, cost-effective system of off-the-shelf components to acquire natural-colour 3D models of insects from around 3 mm to 30 mm in length. ("Natural-colour" is used to contrast with "false-colour", i.e., colour generated from, or applied to, gray-scale data post-acquisition.) Colour images are captured from different angles and focal depths using a digital single lens reflex (DSLR) camera rig and two-axis turntable. These 2D images are processed into 3D reconstructions using software based on a visual hull algorithm. The resulting models are compact (around 10 megabytes), afford excellent optical resolution, and can be readily embedded into documents and web pages, as well as viewed on mobile devices. The system is portable, safe, relatively affordable, and complements the sort of volumetric data that can be acquired by computed tomography. This system provides a new way to augment the description and documentation of insect species holotypes, reducing the need to handle or ship specimens. It opens up new opportunities to collect data for research, education, art, entertainment, biodiversity assessment and biosecurity control. © 2014 Nguyen et al.
Resumo:
This paper discusses the following key messages. Taxonomy is (and taxonomists are) more important than ever in times of global change. Taxonomic endeavour is not occurring fast enough: in 250 years since the creation of the Linnean Systema Naturae, only about 20% of Earth's species have been named. We need fundamental changes to the taxonomic process and paradigm to increase taxonomic productivity by orders of magnitude. Currently, taxonomic productivity is limited principally by the rate at which we capture and manage morphological information to enable species discovery. Many recent (and welcomed) initiatives in managing and delivering biodiversity information and accelerating the taxonomic process do not address this bottleneck. Development of computational image analysis and feature extraction methods is a crucial missing capacity needed to enable taxonomists to overcome the taxonomic impediment in a meaningful time frame. Copyright © 2009 Magnolia Press.
Resumo:
This paper describes students’ developing meta-representational competence, drawn from the second phase of a longitudinal study, Transforming Children’s Mathematical and Scientific Development. A group of 21 highly able Grade 1 students was engaged in mathematics/science investigations as part of a data modelling program. A pedagogical approach focused on students’ interpretation of categorical and continuous data was implemented through researcher-directed weekly sessions over a 2-year period. Fine-grained analysis of the developmental features and explanations of their graphs showed that explicit pedagogical attention to conceptual differences between categorical and continuous data was critical to development of inferential reasoning.
Resumo:
Due to the availability of huge number of web services, finding an appropriate Web service according to the requirements of a service consumer is still a challenge. Moreover, sometimes a single web service is unable to fully satisfy the requirements of the service consumer. In such cases, combinations of multiple inter-related web services can be utilised. This paper proposes a method that first utilises a semantic kernel model to find related services and then models these related Web services as nodes of a graph. An all-pair shortest-path algorithm is applied to find the best compositions of Web services that are semantically related to the service consumer requirement. The recommendation of individual and composite Web services composition for a service request is finally made. Empirical evaluation confirms that the proposed method significantly improves the accuracy of service discovery in comparison to traditional keyword-based discovery methods.
Resumo:
It is a big challenge to guarantee the quality of discovered relevance features in text documents for describing user preferences because of large scale terms and data patterns. Most existing popular text mining and classification methods have adopted term-based approaches. However, they have all suffered from the problems of polysemy and synonymy. Over the years, there has been often held the hypothesis that pattern-based methods should perform better than term-based ones in describing user preferences; yet, how to effectively use large scale patterns remains a hard problem in text mining. To make a breakthrough in this challenging issue, this paper presents an innovative model for relevance feature discovery. It discovers both positive and negative patterns in text documents as higher level features and deploys them over low-level features (terms). It also classifies terms into categories and updates term weights based on their specificity and their distributions in patterns. Substantial experiments using this model on RCV1, TREC topics and Reuters-21578 show that the proposed model significantly outperforms both the state-of-the-art term-based methods and the pattern based methods.
Resumo:
The study of data modelling with elementary students involves the analysis of a developmental process beginning with children’s investigations of meaningful contexts: visualising, structuring, and representing data and displaying data in simple graphs (English, 2012; Lehrer & Schauble, 2005; Makar, Bakker, & Ben-Zvi, 2011). A 3-year longitudinal study investigated young children’s data modelling, integrating mathematical and scientific investigations. One aspect of this study involved a researcher-led teaching experiment with 21 mathematically able Grade 1 students. The study aimed to describe explicit developmental features of students’ representations of continuous data...