155 resultados para Cucurbita moschata


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Endogenous development is defined as development that values primarily locally available resources and the way people organized themselves for that purpose. It is a dynamic and evolving concept that also embraces innovations and complementation from other than endogenous sources of knowledge; however, only as far as they are based on mutual respect and the recognition of cultural and socioeconomic self-determination of each of the parties involved. Experiences that have been systematized in the context of the BioAndes Program are demonstrating that enhancing food security and food sovereignty on the basis of endogenous development can be best achieved by applying a ‘biocultural’ perspective: This means to promote and support actions that are simultaneously valuing biological (fauna, flora, soils, or agrobiodiversity) and sociocultural resources (forms of social organization, local knowledge and skills, norms, and the related worldviews). In Bolivia, that is one of the Latin-American countries with the highest levels of poverty (79% of the rural population) and undernourishment (22% of the total population), the Program BioAndes promotes food sovereignty and food security by revitalizing the knowledge of Andean indigenous people and strengthening their livelihood strategies. This starts by recognizing that Andean people have developed complex strategies to constantly adapt to highly diverse and changing socioenvironmental conditions. These strategies are characterized by organizing the communities, land use and livelihoods along a vertical gradient of the available eco-climatic zones; the resulting agricultural systems are evolving around the own sociocultural values of reciprocity and mutual cooperation, giving thus access to an extensive variety of food, fiber and energy sources. As the influences of markets, competition or individualization are increasingly affecting the life in the communities, people became aware of the need to find a new balance between endogenous and exogenous forms of knowledge. In this context, BioAndes starts by recognizing the wealth and potentials of local practices and aims to integrate its actions into the ongoing endogenous processes of innovation and adaptation. In order to avoid external impositions and biases, the program intervenes on the basis of a dialogue between exogenous, mainly scientific, and indigenous forms of knowledge. The paper presents an analysis of the strengths and weaknesses of enhancing endogenous development through a dialogue between scientific and indigenous knowledge by specifically focusing on its effects on food sovereignty and food security in three ‘biocultural’ rural areas of the Bolivian highlands. The paper shows how the dialogue between different forms of knowledge evolved alongside the following project activities: 1) recuperation and renovation of local seeds and crop varieties (potato – Solanum spp., quinoa – Chenopodium quinoa, cañahua – Chenopodium pallidicaule); 2) support for the elaboration of community-based norms and regulations for governing access and distribution of non-timber forest products, such as medicinal, fodder, and construction plants; 3) revitalization of ethnoveterinary knowledge for sheep and llama breeding; 4) improvement of local knowledge about the transformation of food products (sheep-cheese, lacayote – Cucurbita sp. - jam, dried llama meat, fours of cañahua and other Andean crops). The implementation of these activities fostered the community-based livelihoods of indigenous people by complementing them with carefully and jointly designed innovations based on internal and external sources of knowledge and resources. Through this process, the epistemological and ontological basis that underlies local practices was made visible. On this basis, local and external actors started to jointly define a renewed concept of food security and food sovereignty that, while oriented in the notions of well being according to a collectively re-crafted world view, was incorporating external contributions as well. Enabling and hindering factors, actors and conditions of these processes are discussed in the paper.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Investigations at a Late Weichselian freshwater basin in northwestern Jutland, Denmark, yielded a fairly rich assemblage of vertebrate remains, mostly bones and teeth of small mammals. The remains are primarily allochthonous and the bones have been subjected to different taphonomic pathways and agents. AMS 14C-dates on terrestrial organic remains provided ages of Middle to Late Allerød time. Identifications revealed the first fossil record in Scandinavia of Rana arvalis, Sorex minutus, Ochotona cf. pusilla, Microtus gregalis, Microtus oeconomus, and Sicista cf. betulinu. Spermophilus cf. major and Desmana moschata, previously found only once and twice respectively, were retrieved, and Sorex araneus and Arvicola terrestris were recovered for the first time beyond the Atlantic chronozone. Ecologically, the Nørre Lyngby small mammal fauna can be characterized by its very high and almost equal proportions of boreal forest and steppe elements followed by a relatively high proportion of tundra elements. The fossil species share a modern area of sympatry north of the Caspian Sea from the river Volga in the west to the southern and western slopes of the Urals. If, however, the large Allerød mammals are added, the fauna is without modern analogues. The Nørre Lyngby fauna can be seen as a last expansion of the North European glacial fauna. Provided that an absolute chronology and a differentiated sea-level curve for the area can be established, the Nørre Lyngby fauna could become important for studies in mammalian dispersal and migration rates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Accelerator mass spectrometry age determinations of maize cobs (Zea mays L.) from Guilá Naquitz Cave in Oaxaca, Mexico, produced dates of 5,400 carbon-14 years before the present (about 6,250 calendar years ago), making those cobs the oldest in the Americas. Macrofossils and phytoliths characteristic of wild and domesticated Zea fruits are absent from older strata from the site, although Zea pollen has previously been identified from those levels. These results, together with the modern geographical distribution of wild Zea mays, suggest that the cultural practices that led to Zea domestication probably occurred elsewhere in Mexico. Guilá Naquitz Cave has now yielded the earliest macrofossil evidence for the domestication of two major American crop plants, squash (Cucurbita pepo) and maize.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The first step in gibberellin biosynthesis is catalyzed by copalyl diphosphate synthase (CPS) and ent-kaurene synthase. We have cloned from pumpkin (Cucurbita maxima L.) two cDNAs, CmCPS1 and CmCPS2, that each encode a CPS. Both recombinant fusion CmCPS proteins were active in vitro. CPS are translocated into plastids and processed by cleavage of transit peptides. For CmCPS1 and CmCPS2, the putative transit peptides cannot exceed the first 99 and 107 amino acids, respectively, because longer N-terminal deletions abolished activity. Levels of both CmCPS transcripts were strictly regulated in an organ-specific and developmental manner. Both transcripts were almost undetectable in leaves and were abundant in petioles. CmCPS1 transcript levels were high in young cotyledons and low in roots. In contrast, CmCPS2 transcripts were undetectable in cotyledons but present at significant levels in roots. In hypocotyls, apices, and petioles, CmCPS1 transcript levels decreased with age much more rapidly than those of CmCPS2. We speculate that CmCPS1 expression is correlated with the early stages of organ development, whereas CmCPS2 expression is correlated with subsequent growth. In contrast, C. maxima ent-kaurene synthase transcripts were detected in every organ at almost constant levels. Thus, ent-kaurene biosynthesis may be regulated through control of CPS expression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work [14C]spermidine binding to total proteins solubilized from plasma membrane purified from zucchini (Cucurbita pepo L.) hypocotyls was investigated. Proteins were solubilized using octyl glucoside as a detergent. Specific polyamine binding was thermolabile, reversible, pH dependent with an optimum at pH 8.0, and had a Kd value of 5 μm, as determined by glass-fiber-filter assays. Sephadex G-25 M gel-filtration assays confirmed the presence of a spermidine-protein(s) complex with a specific binding activity. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis and native polyacrylamide gel electrophoresis of collected fractions having the highest specific spermidine-binding activity, several protein bands (113, 75, 66, and 44 kD) were identified. The specificity of spermidine binding was examined by gel-filtration competition experiments performed using other polyamines and compounds structurally related to spermidine. Partial purification on Sephadex G-200 led to the identification of 66- and 44-kD protein bands, which may represent the putative spermidine-binding protein(s) on the plasmalemma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ga2 mutant of Arabidopsis thaliana is a gibberellin-deficient dwarf. Previous biochemical studies have suggested that the ga2 mutant is impaired in the conversion of copalyl diphosphate to ent-kaurene, which is catalyzed by ent-kaurene synthase (KS). Overexpression of the previously isolated KS cDNA from pumpkin (Cucurbita maxima) (CmKS) in the ga2 mutant was able to complement the mutant phenotype. A genomic clone coding for KS, AtKS, was isolated from A. thaliana using CmKS cDNA as a heterologous probe. The corresponding A. thaliana cDNA was isolated and expressed in Escherichia coli as a fusion protein. The fusion protein showed enzymatic activity that converted [3H]copalyl diphosphate to [3H]ent-kaurene. The recombinant AtKS protein derived from the ga2–1 mutant is truncated by 14 kD at the C-terminal end and does not contain significant KS activity in vitro. Sequence analysis revealed that a C-2099 to T base substitution, which converts Gln-678 codon to a stop codon, is present in the AtKS cDNA from the ga2–1 mutant. Taken together, our results show that the GA2 locus encodes KS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ultrastructural features of the sieve element/companion cell complexes were screened in the stem phloem of two symplasmically loading (squash, [Cucurbita maxima L.] and Lythrum salicaria L.) and two apoplasmically loading (broad bean [Vicia faba L.] and Zinnia elegans L.) species. The distinct ultrastructural differences between the companion cells in the collection phloem of symplasmically and apoplasmically phloem-loading species continue to exist in the transport phloem. Plasmodesmograms of the stem phloem showed a universal symplasmic constriction at the interface between the sieve element/companion cell complex and the phloem parenchyma cells. This contrasts with the huge variation in symplasmic continuity between companion cells and adjoining cells in the collection phloem of symplasmically and apoplasmically loading species. Further, the ultrastructure of the companion cells in the transport phloem faintly reflected the features of the companion cells in the loading zone of the transport phloem. The companion cells of squash contained numerous small vacuoles (or vesicles), and those of L. salicaria contained a limited number of vacuoles. The companion cells of broad bean and Z. elegans possessed small wall protrusions. Implications of the present findings for carbohydrate processing in intact plants are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

All peroxisomal proteins are nuclear encoded, synthesized on free cytosolic ribosomes, and posttranslationally targeted to the organelle. We have used an in vitro assay to reconstitute protein import into pumpkin (Cucurbita pepo) glyoxysomes, a class of peroxisome found in the cotyledons of oilseed plants, to study the mechanisms involved in protein transport across peroxisome membranes. Results indicate that ATP hydrolysis is required for protein import into peroxisomes; nonhydrolyzable analogs of ATP could not substitute for this requirement. Nucleotide competition studies suggest that there may be a nucleotide binding site on a component of the translocation machinery. Peroxisomal protein import also was supported by GTP hydrolysis. Nonhydrolyzable analogs of GTP did not substitute in this process. Experiments to determine the cation specificity of the nucleotide requirement show that the Mg2+ salt was preferred over other divalent and monovalent cations. The role of a putative protonmotive force across the peroxisomal membrane was also examined. Although low concentrations of ionophores had no effect on protein import, relatively high concentrations of all ionophores tested consistently reduced the level of protein import by approximately 50%. This result suggests that a protonmotive force is not absolutely required for peroxisomal protein import.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The biosynthesis of gibberellins (GAs) after GA12-aldehyde involves a series of oxidative steps that lead to the formation of bioactive GAs. Previously, a cDNA clone encoding a GA 20-oxidase [gibberellin, 2-oxoglutarate:oxygen oxidoreductase (20-hydroxylating, oxidizing), EC 1.14.11.-] was isolated by immunoscreening a cDNA library from liquid endosperm of pumpkin (Cucurbita maxima L.) with antibodies against partially purified GA 20-oxidase. Here, we report isolation of a genomic clone for GA 20-oxidase from a genomic library of the long-day species Arabidopsis thaliana Heynh., strain Columbia, by using the pumpkin cDNA clone as a heterologous probe. This genomic clone contains a GA 20-oxidase gene that consists of three exons and two introns. The three exons are 1131-bp long and encode 377 amino acid residues. A cDNA clone corresponding to the putative GA 20-oxidase genomic sequence was constructed with the reverse transcription-PCR method, and the identity of the cDNA clone was confirmed by analyzing the capability of the fusion protein expressed in Escherichia coli to convert GA53 to GA44 and GA19 to GA20. The Arabidopsis GA 20-oxidase shares 55% identity and > 80% similarity with the pumpkin GA 20-oxidase at the derived amino acid level. Both GA 20-oxidases share high homology with other 2-oxoglutarate-dependent dioxygenases (2-ODDs), but the highest homology was found between the two GA 20-oxidases. Mapping results indicated tight linkage between the cloned GA 20-oxidase and the GA5 locus of Arabidopsis. The ga5 semidwarf mutant contains a G-->A point mutation that inserts a translational stop codon in the protein-coding sequence, thus confirming that the GA5 locus encodes GA 20-oxidase. Expression of the GA5 gene in Ara-bidopsis leaves was enhanced after plants were transferred from short to long days; it was reduced by GA4 treatment, suggesting end-product repression in the GA biosynthetic pathway.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La trazabilidad y el correcto etiquetado de los piensos y sus ingredientes son factores esenciales para prevenir fraudes y garantizar la seguridad alimentaria. En el ámbito de la lucha contra las Encefalopatías Espongiformes Transmisibles (EETs), la prohibición de la Unión Europea (UE) de alimentar a rumiantes y otros animales de granja con harinas de carne y huesos derivadas de animales, hace necesaria la disponibilidad de metodologías que permitan identificar el origen de las materias primas e ingredientes presentes en los piensos. El método oficial de análisis microscópico tradicionalmente empleado para este fin presenta limitaciones a la hora de diferenciar entre los huesos de mamíferos y de aves, así como para determinar el origen animal específico de las partículas detectadas. Por ello, una de las prioridades de la UE en los últimos años ha sido potenciar la búsqueda y desarrollo de técnicas analíticas alternativas que permitan la detección específica de todos los componentes que integran los piensos. Teniendo en cuenta estos aspectos, en esta Tesis Doctoral se han desarrollado técnicas de PCR en tiempo real con sondas TaqMan® para el control de autenticidad y trazabilidad de ingredientes de origen animal utilizados en la fabricación de los piensos. Las especies objeto de este trabajo han sido: vaca (Bos taurus), oveja (Ovis aries), cabra (Capra hircos), grupo rumiante, cerdo (Sus scrofa), pollo (Gallus gallos), pavo (Meleagris g-allopavo), pato (Anal platyrhynchos x Cairina moschata), oca (Anser anser), grupo aviar, caballo (Equus caballus), conejo (Oryctolagus cuniculus), liebre (Lepus capensis), grupo lepórido (conejo y liebre) y pescados...

Relevância:

10.00% 10.00%

Publicador: