913 resultados para Conversió automàtica text-veu


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uma bomba d'água acionada por correnteza de rios foi construída e testada. O desenho incorporou um hidrofólio suportado por um braço oscilante. Uma mudança automática do ângulo de ataque do hidrofólio faz com que o braço levante e desça continuamente, acionando uma boma de pistão. Com correntezas de 0,6 a 1,1m2 a vazão da bomba foi de 3 a 6 m3 de água por dia a uma altura de 9 m. A bomba tem boas possibilidades de poder abastecer casas situadas pertos de rios de terra firme com água desses rios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Actualmente, com a massificação da utilização das redes sociais, as empresas passam a sua mensagem nos seus canais de comunicação, mas os consumidores dão a sua opinião sobre ela. Argumentam, opinam, criticam (Nardi, Schiano, Gumbrecht, & Swartz, 2004). Positiva ou negativamente. Neste contexto o Text Mining surge como uma abordagem interessante para a resposta à necessidade de obter conhecimento a partir dos dados existentes. Neste trabalho utilizámos um algoritmo de Clustering hierárquico com o objectivo de descobrir temas distintos num conjunto de tweets obtidos ao longo de um determinado período de tempo para as empresas Burger King e McDonald’s. Com o intuito de compreender o sentimento associado a estes temas foi feita uma análise de sentimentos a cada tema encontrado, utilizando um algoritmo Bag-of-Words. Concluiu-se que o algoritmo de Clustering foi capaz de encontrar temas através do tweets obtidos, essencialmente ligados a produtos e serviços comercializados pelas empresas. O algoritmo de Sentiment Analysis atribuiu um sentimento a esses temas, permitindo compreender de entre os produtos/serviços identificados quais os que obtiveram uma polaridade positiva ou negativa, e deste modo sinalizar potencias situações problemáticas na estratégia das empresas, e situações positivas passíveis de identificação de decisões operacionais bem-sucedidas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data Mining surge, hoje em dia, como uma ferramenta importante e crucial para o sucesso de um negócio. O considerável volume de dados que atualmente se encontra disponível, por si só, não traz valor acrescentado. No entanto, as ferramentas de Data Mining, capazes de transformar dados e mais dados em conhecimento, vêm colmatar esta lacuna, constituindo, assim, um trunfo que ninguém quer perder. O presente trabalho foca-se na utilização das técnicas de Data Mining no âmbito da atividade bancária, mais concretamente na sua atividade de telemarketing. Neste trabalho são aplicados catorze algoritmos a uma base de dados proveniente do call center de um banco português, resultante de uma campanha para a angariação de clientes para depósitos a prazo com taxas de juro favoráveis. Os catorze algoritmos aplicados no caso prático deste projeto podem ser agrupados em sete grupos: Árvores de Decisão, Redes Neuronais, Support Vector Machine, Voted Perceptron, métodos Ensemble, aprendizagem Bayesiana e Regressões. De forma a beneficiar, ainda mais, do que a área de Data Mining tem para oferecer, este trabalho incide ainda sobre o redimensionamento da base de dados em questão, através da aplicação de duas estratégias de seleção de atributos: Best First e Genetic Search. Um dos objetivos deste trabalho prende-se com a comparação dos resultados obtidos com os resultados presentes no estudo dos autores Sérgio Moro, Raul Laureano e Paulo Cortez (Sérgio Moro, Laureano, & Cortez, 2011). Adicionalmente, pretende-se identificar as variáveis mais relevantes aquando da identificação do potencial cliente deste produto financeiro. Como principais conclusões, depreende-se que os resultados obtidos são comparáveis com os resultados publicados pelos autores mencionados, sendo os mesmos de qualidade e consistentes. O algoritmo Bagging é o que apresenta melhores resultados e a variável referente à duração da chamada telefónica é a que mais influencia o sucesso de campanhas similares.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A estrutura temporal das taxas de juro, também conhecida por yield curve ou curva de rendimentos define a relação entre as taxas de juros e o prazo de vencimento (ou maturidades) dos investimentos feitos. Assim, o desenvolvimento de modelos que possibilitem a obtenção de previsões precisas sobre a estrutura temporal das taxas de juro e que permitam estudar a dinâmica da evolução das taxas de juro é de crucial importância em diversas áreas de financiamento. Neste estudo investigou-se a performance de diferentes métodos de previsão para obter a estrutura temporal das taxas de juro da Zona Euro, considerando o período entre 2009 e 2015. Em termos mais específicos, foi analisada a capacidade preditiva do modelo de Nelson-Siegel & Svensson assumindo que os parâmetros resultantes da estimação da especificação paramétrica podem ser modelizados através de métodos de séries temporais univariados (modelos ARIMA, Random walk) e multivariados (modelos VAR) e Redes Neuronais Artificiais (RNA) individuais e conjuntas. Os resultados deste estudo mostram que (i) as RNA com a previsão dos parâmetros em simultâneo exibem os valores de erro mais baixos para as maturidades de curto e médio prazo (3 meses a 5 anos); (ii) As RNAs individuais são melhores para prever as taxas de juro nas maturidades compreendidas entre os 7 e os 10 anos, e que (iii) para as maturidades de longo e muito longo prazo (15 e 30 anos respetivamente) deverá ser escolhido o modelo VAR(1). Estes resultados são robustos e consistentes para todos os horizontes de previsão analisados (1,2 e 3 meses). Contudo, no período analisado nenhum dos modelos testados apresenta valores de erro inferiores aos obtidos com o modelo Random Walk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

telligence applications for the banking industry. Searches were performed in relevant journals resulting in 219 articles published between 2002 and 2013. To analyze such a large number of manuscripts, text mining techniques were used in pursuit for relevant terms on both business intelligence and banking domains. Moreover, the latent Dirichlet allocation modeling was used in or- der to group articles in several relevant topics. The analysis was conducted using a dictionary of terms belonging to both banking and business intelli- gence domains. Such procedure allowed for the identification of relationships between terms and topics grouping articles, enabling to emerge hypotheses regarding research directions. To confirm such hypotheses, relevant articles were collected and scrutinized, allowing to validate the text mining proce- dure. The results show that credit in banking is clearly the main application trend, particularly predicting risk and thus supporting credit approval or de- nial. There is also a relevant interest in bankruptcy and fraud prediction. Customer retention seems to be associated, although weakly, with targeting, justifying bank offers to reduce churn. In addition, a large number of ar- ticles focused more on business intelligence techniques and its applications, using the banking industry just for evaluation, thus, not clearly acclaiming for benefits in the banking business. By identifying these current research topics, this study also highlights opportunities for future research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transcriptional Regulatory Networks (TRNs) are powerful tool for representing several interactions that occur within a cell. Recent studies have provided information to help researchers in the tasks of building and understanding these networks. One of the major sources of information to build TRNs is biomedical literature. However, due to the rapidly increasing number of scientific papers, it is quite difficult to analyse the large amount of papers that have been published about this subject. This fact has heightened the importance of Biomedical Text Mining approaches in this task. Also, owing to the lack of adequate standards, as the number of databases increases, several inconsistencies concerning gene and protein names and identifiers are common. In this work, we developed an integrated approach for the reconstruction of TRNs that retrieve the relevant information from important biological databases and insert it into a unique repository, named KREN. Also, we applied text mining techniques over this integrated repository to build TRNs. However, was necessary to create a dictionary of names and synonyms associated with these entities and also develop an approach that retrieves all the abstracts from the related scientific papers stored on PubMed, in order to create a corpora of data about genes. Furthermore, these tasks were integrated into @Note, a software system that allows to use some methods from the Biomedical Text Mining field, including an algorithms for Named Entity Recognition (NER), extraction of all relevant terms from publication abstracts, extraction relationships between biological entities (genes, proteins and transcription factors). And finally, extended this tool to allow the reconstruction Transcriptional Regulatory Networks through using scientific literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este estudo apresenta uma abordagem metodológica baseada em imagens de radar e nos critérios de tonalidade, tamanho e forma geométrica para identificar prováveis pistas de pouso não-homologadas na Amazônia. Os seguintes procedimentos foram conduzidos: georreferenciamento da imagem do sensor SAR-R99B do município paraense de Itaituba, adquirida na banda L, polarização HH e resolução espacial de três metros; subtração do ruído speckle com filtro mediana; classificação com a técnica não-supervisionada ISODATA; vetorização da classe indicativa dos alvos de interesse; e cálculo e seleção automática dos alvos de interesse por critérios de índice de circularidade e de tortuosidade. Foram identificados dez alvos, dos quais dois foram considerados como prováveis pistas de pouso pelos referidos índices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este estudo apresenta um mapa da cobertura vegetal da planície de inundação do Rio Amazonas entre as cidades de Parintins (AM) e Almeirim (PA), com base em imagens Landsat-MSS adquiridas entre 1975 e 1981. O processamento digital dessas imagens envolveu a transformação para imagens-fração de vegetação, solo e água escura (sombra), seguido da aplicação de técnicas de segmentação e classificação por região. O mapa resultante da classificação foi organizado em quatro classes de cobertura do solo: floresta de várzea, vegetação não-florestal de várzea, solo exposto e água aberta. A precisão do mapa foi estimada a partir de dois tipos de informações coletadas em campo: 1) pontos de descrição: para validação das classes de cobertura não sujeitas a grandes alterações, como é o caso dos corpos d'água permanentes, e identificação de indicadores dos tipos de cobertura original presentes na paisagem na ocasião da obtenção das imagens (72 pontos); 2) entrevistas com moradores antigos para a recuperação da memória sobre a cobertura vegetal existente há 30 anos (44 questionários). Ao todo foram coletadas informações em 116 pontos distribuídos ao longo da área de estudo. Esses pontos foram utilizados para calcular o Índice Kappa de concordância entre os dados de campo e o mapa resultante da classificação automática, cujo valor (0,78) indica a boa qualidade do mapa de cobertura vegetal da várzea. Os resultados mostram que a região possuía uma cobertura florestal de várzea de aproximadamente 8.650 km2 no período de aquisição das imagens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado em Engenharia Mecânica

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia e Gestão de Sistemas de Informação

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado em Português Língua Não Materna (MPLNM) Português Língua Estrangeira (PLE) e Língua Segunda (PL2)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El presente proyecto denominado “EICAR, Electrónica, Informática, Comunicaciones, Automática y Robótica para la Producción de Bienes y Servicios” asocia estratégicamente a un importante grupo de instituciones del sector científico-tecnológico, privado y gobierno con el objetivo de formar recursos humanos altamente capacitados, desarrollar conocimiento y tecnología de punta, en el campo convergente de la electrónica, informática y computación industrial, comunicaciones y automática, y su transferencia para el desarrollo activo de sectores estratégicos del país, a través de la ejecución de seis Programas: 1) Desarrollo de sistemas inteligentes para eficientizar el uso racional de la energía; 2) I+D para el desarrollo de sistemas complejos de aeronáutica y aeroespacio; 3) Desarrollos para la plataforma de TV Digital y su integración a Internet; 4) Trazabilidad de productos agropecuarios y agroindustriales; 5) Elaboración de un plan estratégico para el desarrollo de infraestructura en TICs del Corredor Bioceánico del Centro basado en sistemas GPS y Proyecto Galileo; 6) Monitoreo de las tendencias tecnológicas de los Programas propuestos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJETIVO: Avaliar os efeitos da estimulação atrial otimizada (EAO) (estimulação duplo-sítio atrial, freqüência acima da intrínseca e algoritmo funcional específico) e uso de atenolol, na prevenção da fibrilação atrial (FA) recorrente. Desfecho primário: quantificar a taxa de episódios de FA. Desfechos secundários: qualidade de vida, avaliação de sintomas específicos cardiovasculares, taxa de internações hospitalares, taxa de cardioversões elétricas e farmacológicas e eventos cardíacos adversos. MÉTODOS: Vinte e sete pacientes com FA paroxística recorrente e doença do nó sinusal foram submetidos ao implante de marcapasso duplo-sítio atrial e ventricular e iniciaram com atenolol 100 mg/dia, a seguir foram randomizados em dois grupos, grupo I (3 meses iniciais com EAO e algoritmo especifico ligado e mais 3 com o mesmo desligado) e grupo II (seqüência inversa do grupo I). O modo de estimulação foi DDDR e após 3 meses, foram submetidos à avaliação clínica e eletrônica do sistema de estimulação - mudança automática de modo (AMS), Holter de 24 horas, ecocardiograma e questionário SF-36. Em seguida, foram cruzados e após 6 meses, nova avaliação. RESULTADOS: Pacientes com EAO, quando comparados ao grupo com algoritmo desligado, apresentaram menores taxas de: FA/semana (p<0,001), ativações do AMS (p<0,01), hospitalizações (p<0,001), cardioversões (p<0,001), além de melhores índices dos componentes físico e mental da qualidade de vida. CONCLUSÃO: A terapêutica híbrida, EAO associada ao uso de atenolol, reduziu a taxa de recorrência de FA e proporcionou melhora clínico funcional de pacientes com bradiarritmias sintomáticas.