955 resultados para Continuous progression


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last decade we have come to understand that the growth of cancer cells in general and of breast cancer in particular depends, in many cases, upon growth factors that will bind to and activate their receptors. One of these growth factor receptors is the erbB-2 protein which plays an important role in the prognosis of breast cancer and is overexpressed in nearly 30% of human breast cancer patients. While evidence accumulates to support the relationship between erbB-2 overexpression and poor overall survival in breast cancer, understanding of the biological consequence(s) of erbB-2 overexpression remains elusive. Our recent discovery of the gp30 has allowed us to identify a number of related but distinct biological endpoints which appear responsive to signal transduction through the erbB-2 receptor. These endpoints of growth, invasiveness, and differentiation have clear implications for the emergence, maintenance and/or control of malignancy, and represent established endpoints in the assessment of malignant progression in breast cancer. We have shown that gp30 induces a biphasic growth effect on cells with erbB-2 over-expression. We have recently determined the protein sequence of gp30 and cloned its full length cDNA sequence. We have also cloned two additional forms to the ligand, that are believed to be different isoforms. We are currently expressing the different forms in order to determine their biological effects. To elucidate the cellular mechanisms underlying cell growth inhibition by gp30, we tested the effect of this ligand on cell growth and differentiation of the human breast cancer cells which overexpress erbB-2 and cells which express low levels of this protooncogene. High concentrations of ligand induced differentiation of cells overexpressing erbB-2, as measured by inhibition of cell growth, and increased synthesis of milk components, and modulation of E-cadherin and up- regulation of c-jun and c-fos. These findings indicate that ligand-induced growth inhibition in cells overexpressing erbB-2 is associated with an apparent induction of differentiation. The availability of gp30 derived synthetic peptides and its full cDNAs provides tools necessary to acquire a better understanding of the mechanism of action of the this ligands and the erbB-2 receptor in breast cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The progression of several cancers is correlated with the increased synthesis of the glycosaminoglycan, hyaluronan. Hyaluronan is synthesized at the plasma membrane by various isoforms of hyaluronan synthases (HAS). The importance of HAS2 expression in highly invasive breast cancer was characterized by the antisense inhibition of HAS2 (ASHAS2). The effect of HAS2 inhibition on cell proliferation, migration, hyaluronan metabolism, and receptor status was characterized in vitro, whereas the effect on tumorigenicity and metastasis was established in vivo. HAS2 inhibition resulted in a 24-hour lag in proliferation that was concomitant to transient arrest of 79% of the cell population in G 0-G1. Inhibition of HAS2 did not alter the expression of the other HAS isoforms, whereas hyaluronidase (HYAL2) and the hyaluronan receptor, CD44, were significantly down-regulated. ASHAS2 cells accumulated greater amounts of high molecular weight hyaluronan (>10,000 kDa) in the culture medium, whereas mock and parental cells liberated less hyaluronan of three distinct molecular weights (100, 400, and 3,000 kDa). The inhibition of HAS2 in the highly invasive MDA-MB-231 breast cancer cell line inhibited the initiation and progression of primary and secondary tumor formation following s.c. and intracardiac inoculation into nude mice, whereas controls readily established both primary and secondary tumors. The lack of primary and secondary tumor formation was manifested by increased survival times where ASHAS2 animals survived 172% longer than the control animals. Collectively, these unique results strongly implicate the central role of HAS2 in the initiation and progression of breast cancer, potentially highlighting the codependency between HAS2, CD44, and HYAL2 expression. ©2005 American Association for Cancer Research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Muscle invasive transitional cell carcinoma (TCC) of the bladder is associated with a high frequency of metastasis, resulting in poor prognosis for patients presenting with this disease. Models that capture and demonstrate step-wise enhancement of elements of the human metastatic cascade on a similar genetic background are useful research tools. We have utilized the transitional cell carcinoma cell line TSU-Pr1 to develop an in vivo experimental model of bladder TCC metastasis. TSU-Pr1 cells were inoculated into the left cardiac ventricle of SCID mice and the development of bone metastases was monitored using high resolution X-ray. Tumor tissue from a single bone lesion was excised and cultured in vitro to generate the TSU-Pr1-B1 subline. This cycle was repeated with the TSU-Pr1-B1 cells to generate the successive subline TSU-Pr1-B2. DNA profiling and karyotype analysis confirmed the genetic relationship of these three cell lines. In vitro, the growth rate of these cell lines was not significantly different. However, following intracardiac inoculation TSU-Pr1, TSU-Pr1-B1 and TSU-Pr1-B2 exhibited increasing metastatic potential with a concomitant decrease in time to the onset of radiologically detectable metastatic bone lesions. Significant elevations in the levels of mRNA expression of the matrix metalloproteases (MMPs) membrane type 1-MMP (MT1-MMP), MT2-MMP and MMP-9, and their inhibitor, tissue inhibitor of metalloprotease-2 (TIMP-2), across the progressively metastatic cell lines, were detected by quantitative PCR. Given the role of MT1-MMP and TIMP-2 in MMP-2 activation, and the upregulation of MMP-9, these data suggest an important role for matrix remodeling, particularly basement membrane, in this progression. The TSU-Pr1-B1/B2 model holds promise for further identification of important molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many data have emerged in support of the concept that the promotion of a migratory phenotype in epithelial cells is the result of an EMT, which leads to the loss of differentiation and to the acquisition of several mesenchymal features. Such an event is likely to occur during the metastatic conversion enabling the metastatic cell to invade the connective tissue and disseminate. Even though it cannot be excluded that some cancer cells might constitutively express a metastatic phenotype, the EMT implicated in the tumor progression process would rather be transient, induced in certain cells of the primary tumor by different factors, and reversed when the cells settle down in secondary organs (as schematically represented in Figure 1). However, it is clear that the phenotype that would emerge from the EMT occurring during tumor progression would also be modulated by the genetic background of the cells and must be to some extent different than the ones observed in normal physiological processes, and must also vary from one tumor to another.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many breast tumors appear to follow a predictable clinical pattern, being initially responsive to endocrine therapy and to cytotoxic chemotherapy but ultimately exhibiting a phenotype resistant to both modalities. Using the MCF-7 human breast cancer cell line as an example of an 'early' phenotype (estrogen and progesterone receptor positive, steroid responsive, low metastatic potential), we have isolated and characterized a series of hormone-independent but hormone-responsive variants (MIII and MCF7/LCC1). However, these variants remain responsive to both antiestrogens and cytotoxic drugs (methotrexate and colchicine). MIII and MCF7/LCCl cells appear to mimic some of the critical aspects of the early progression to a more aggressive phenotype. An examination of the phenotype of these cells suggests that some hormone-independent breast cancer cells are derived from hormone-dependent parental cells. The development of a hormone-independent phenotype can arise independently of acquisition of a cytotoxic drug resistant phenotype.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human ovarian carcinoma samples were orthotopically implanted into SCID mice to investigate the contribution of matrix metalloproteases (MMPs) to the spread of ovarian tumors. Mice were inoculated with patient tumor samples, and developed ovarian tumors over a 16-week period with metastasis occurring in some mice. Species-specific quantitative RT-PCR was used to identify the source of tumor-associated MMPs. Membrane-type (MT)1-MMP mRNA was significantly increased in high-grade tumors, tumors with evidence of serosal involvement, and tumors in which distant metastases were detected. The increase in MT1-MMP expression was predominantly from the human tumor cells, with a minor contribution from the mouse ovarian stroma. Neither human nor mouse MT2-MMP were correlated with tumor progression and MT3-MMP levels were negligible. While tumor cells did not produce significant amounts of MMP-2 or MMP-9, the presence of tumor was associated with increased levels of MMP-2 expression by mouse ovarian stroma. Stromal-derived MT1-MMP was greater in large tumors and was associated with stromal MMP-2 expression but neither was significantly linked with metastasis. These studies indicate that tumor-derived MT1-MMP, more so than other gelatinolytic MMPs, is strongly linked to aggressive tumor behavior. This orthotopic model of human ovarian carcinoma is appropriate for studying ovarian tumor progression, and will be valuable in the further investigation of the metastatic process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Among the processes contributing to the progressive acquisition of the highly malignant phenotype in breast cancer are ovarian-independent growth, antioestrogen resistance and increased metastatic potential. We have previously observed that increased invasiveness and development of ovarian-independent growth occur independently. In an attempt to define the inter-relationships between these processes further, we have compared the phenotypes of ovarian-independent, invasive and antioestrogen-resistant sublines of the ovarian-dependent human breast cancer cell line MCF-7. Cells acquiring ovarian-independent growth can retain sensitivity to anti-oestrogens. One clone of MCF-7 cells selected for stable antioestrogen resistance has become non-tumorigenic but its invasive potential remains unaltered. Thus, acquisitions of some characteristics of the progressed phenotype can occur independently. This phenomenon of independent parameters in phenotypic progression could partly explain the considerable intra- and intertumour heterogeneity characteristic of breast tumours.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have isolated a series of sublines of the hormone-dependent MCF-7 human breast cancer cell line after selection both in vivo and in vitro for growth in the presence of subphysiological concentrations of estrogens. These sublines represent a model system for study of the processes leading to hormonal autonomy. The cells form growing tumors in ovariectomized athymic nude mice in the absence of estrogen supplementation but retain some responsivity to estrogen as determined by stimulation of the rate of tumor growth in vivo and by induction of progesterone receptor. An ovarian-independent but hormone-responsive phenotype may occur early in the natural progression to hormone-independent and unresponsive growth in breast cancer. We observed no change in the affinity or decrease in the level of expression of estrogen receptors and progesterone receptors among the sublines and the parental cells. Epidermal growth factor receptors are not overexpressed in ovarian-independent cells. Thus, altered hormone receptor expression may be a late event in the acquisition of a hormone-independent and unresponsive phenotype. Sublines isolated by in vivo but not in vitro selection are more invasive than the parental cells both in vivo and across an artificial basement membrane in vitro. Thus, as yet unknown tumor-host interactions may be important in the development of an invasive phenotype. Furthermore, acquisition of the ovarian-independent and invasive phenotypes can occur independently.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Expression of matrix metalloproteinase-2 (MMP-2), the 72-kd type IV collagenase/gelatinase, by cancer cells has been implicated in metastasis through cancer cell invasion of basement membranes mediated by degradation of collagen IV. However, the abundance of this latent proenzyme in normal tissues and fluids suggests that MMP-2 proenzyme utilization is limited by its physiological activation rather than expression alone. We previously reported activation of this proenzyme by normal and malignant fibroblastoid cells cultured on collagen I (vitrogen) gels. Purpose: Our purposes in this study were 1) to determine whether MMP-2 activation is restricted to the more invasive human breast cancer cell lines and 2) to localize the activating mechanism. Methods: Zymography was used to monitor MMP-2 activation through detection of latent MMP-2 (72 kd) and mature species of smaller molecular weight (59 or 62 kd). Human breast cancer cell lines cultured on plastic, vitrogen, and other matrices were thus screened for MMP- 2 activation. Collagen I-cultured cells were exposed to cycloheximide, a protein synthesis inhibitor, or to protease inhibitors to determine the nature of the MMP-2-activating mechanism. Triton X-114 (TX-114) detergent extracts from cells cultured on collagen I or plastic were incubated with latent MMP-2 and analyzed by zymography to localize the MMP-2 activator. Results: MMP-2 activation was only induced by collagen I culture in the more aggressive, highly invasive estrogen receptor-negative, vimentin-positive human breast cancer cell lines (Hs578T, MDA-MB-436, BT549, MDA-MB-231, MDA- MB-435, MCF-7(ADR)) and was independent of MMP-2 production. MMP-2 activation was detected in cells cultured on collagen I gels but not in those cultured on gelatin gels, Matrigel, or thin layers of collagen I or IV, gelatin, or fibronectin. Collagen-induced activation was specific for the enzyme species MMP-2, since MMP-9, the 92-kd type IV collagenase/gelatinase, was not activatable under similar conditions. MMP-2 activation was inhibited by cycloheximide and was sensitive to a metalloproteinase inhibitor but not to aspartyl, serine, or cysteinyl protease inhibitors. MMP-2 activation was detected in the hydrophobic, plasma membrane-enriched, TX-114 extracts from invasive collagen I-cultured cells. Conclusion: Collagen I-induced MMP-2 activation is restricted to highly invasive estrogen receptor-negative, vimentin-positive human breast cancer cell lines, is independent of MMP-2 production, and is associated with metastatic potential. Our findings are consistent with plasma membrane localization of the activator. Implications: The MMP-2 activation mechanism may represent a new target for diagnosis, prognosis, and treatment of human breast cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have previously demonstrated that fibroblasts and invasive human breast carcinoma (HBC) cells specifically activate matrix metalloproteinase- 2 (MMP-2) when cultured on 3-dimensional gels of type I collagen but not a range of other substrates. We show here the constitutive expression of membrane-type 1 (MT1)-MMP in both fibroblasts, and invasive HBC cell lines, that have fibroblastic attributes presumably acquired through an epithelial- to-mesenchymal transition (EMT). Treatment with collagen type I increased the steady-state MT1-MMP mRNA levels in these cells but did not induce either MT1-MMP expression or MMP-2 activation in noninvasive breast carcinoma cell lines, which retain epithelial features. Basal MT3-MMP mRNA expression had a pattern similar to that of MT1-MMP but was not up-regulated by collagen. MT4- MMP mRNA was seen in both invasive and noninvasive HBC cell lines and was also not collagen-regulated, and MT2-MMP mRNA was not detected in any of the HBC cell lines tested. These data support a role for MT1-MMP in the collagen- induced MMP-2-activation seen in these cells. In situ hybridization analysis of archival breast cancer specimens revealed a close parallel in expression of both collagen type I and MT1-MMP mRNA in peritumoral fibroblasts, which was correlated with aggressiveness of the lesion. Relatively high levels of expression of both mRNA species were seen in fibroblasts close to invasive tumor nests and, although only focally, in certain areas close to preinvasive tumors. These foci may represent hot spots for local degradation and invasive progression. Collectively, these results implicate MT1-MMP in collagen- stimulated MMP-2 activation and suggest that this mechanism may be employed in vivo by both tumor-associated fibroblasts and EMT-derived carcinoma cells to facilitate increased invasion and/or metastasis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a method, based on polychotomous discrete choice methods, to impute a continuous measure of income when only a bracketed measure of income is available and for only a subset of the obsevations. The method is shown to perform well with CP5 data. © 1991.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have demonstrated the nonlinear absorption at 532 nm wavelength in an Au semi-continuous film (SF) resulting from smearing of the Fermi distribution and diffusion of conduction electrons into the substrate. The Au SF was irradiated by a pulsed laser with 8 ns pulse width at 532 nm in near resonance with the interband transition of the Au. We determined the temperature increase in the SF for different intensities by electrical measurement. We calculated the temperature increase by using a 1D heat transport equation; comparing the results of the calculation with measured values for the temperature increase, revealed the nonlinear absorption in the Au SF. We employed this deviation from linear behaviour to determine the nonlinear absorption coefficient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutation of the BRAF gene is common in thyroid cancer. Follicular variant of papillary thyroid carcinoma is a variant of papillary thyroid carcinoma that has created continuous diagnostic controversies among pathologists. The aims of this study are to (1) investigate whether follicular variant of papillary thyroid carcinoma has a different pattern of BRAF mutation than conventional papillary thyroid carcinoma in a large cohort of patients with typical features of follicular variant of papillary thyroid carcinoma and (2) to study the relationship of clinicopathological features of papillary thyroid carcinomas with BRAF mutation. Tissue blocks from 76 patients with diagnostic features of papillary thyroid carcinomas (40 with conventional type and 36 with follicular variant) were included in the study. From these, DNA was extracted and BRAF V600E mutations were detected by polymerase chain reaction followed by restriction enzyme digestion and sequencing of exon 15. Analysis of the data indicated that BRAF V600E mutation is significantly more common in conventional papillary thyroid carcinoma (58% versus 31%, P = .022). Furthermore, the mutation was often noted in female patients (P = .017), in high-stage cancers (P = .034), and in tumors with mild lymphocytic thyroiditis (P = .006). We concluded that follicular variant of papillary thyroid carcinoma differs from conventional papillary thyroid carcinoma in the rate of BRAF mutation. The results of this study add further information indicating that mutations in BRAF play a role in thyroid cancer development and progression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The eukaryotic cell cycle is a fundamental evolutionarily conserved process that regulates cell division from simple unicellular organisms, such as yeast, through to higher multicellular organisms, such as humans. The cell cycle comprises several phases, including the S-phase (DNA synthesis phase) and M-phase (mitotic phase). During S-phase, the genetic material is replicated, and is then segregated into two identical daughter cells following mitotic M-phase and cytokinesis. The S- and M-phases are separated by two gap phases (G1 and G2) that govern the readiness of cells to enter S- or M-phase. Genetic and biochemical studies demonstrate that cell division in eukaryotes is mediated by CDKs (cyclin-dependent kinases). Active CDKs comprise a protein kinase subunit whose catalytic activity is dependent on association with a regulatory cyclin subunit. Cell-cycle-stage-dependent accumulation and proteolytic degradation of different cyclin subunits regulates their association with CDKs to control different stages of cell division. CDKs promote cell cycle progression by phosphorylating critical downstream substrates to alter their activity. Here, we will review some of the well-characterized CDK substrates to provide mechanistic insights into how these kinases control different stages of cell division.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Cancer metastasis is the main contributor to breast cancer fatalities as women with the metastatic disease have poorer survival outcomes than women with localised breast cancers. There is an urgent need to develop appropriate prognostic methods to stratify patients based on the propensities of their cancers to metastasise. The insulin-like growth factor (IGF)-I:IGF binding protein (IGFBP):vitronectin complexes have been shown to stimulate changes in gene expression favouring increased breast cancer cell survival and a migratory phenotype. We therefore investigated the prognostic potential of these IGF- and extracellular matrix (ECM) interaction-induced proteins in the early identification of breast cancers with a propensity to metastasise using patient-derived tissue microarrays. Methods: Semiquantitative immunohistochemistry analyses were performed to compare the extracellular and subcellular distribution of IGF- and ECM-induced signalling proteins among matched normal, primary cancer and metastatic cancer formalin-fixed paraffin-embedded breast tissue samples. Results: The IGF- and ECM-induced signalling proteins were differentially expressed between subcellular and extracellular localisations. Vitronectin and IGFBP-5 immunoreactivity was lower while β1 integrin immunoreactivity was higher in the stroma surrounding metastatic cancer tissues, as compared to normal breast and primary cancer stromal tissues. Similarly, immunoreactive stratifin was found to be increased in the stroma of primary as well as metastatic breast tissues. Immunoreactive fibronectin and β1 integrin was found to be highly expressed at the leading edge of tumours. Based on the immunoreactivity it was apparent that the cell signalling proteins AKT1 and ERK1/2 shuffled from the nucleus to the cytoplasm with tumour progression. Conclusion: This is the first in-depth, compartmentalised analysis of the distribution of IGF- and ECM-induced signalling proteins in metastatic breast cancers. This study has provided insights into the changing pattern of cellular localisation and expression of IGF- and ECM-induced signalling proteins in different stages of breast cancer. The differential distribution of these biomarkers could provide important prognostic and predictive indicators that may assist the clinical management of breast disease, namely in the early identification of cancers with a propensity to metastasise, and/or recur following adjuvant therapy.