915 resultados para Continuous flow injection system, FIAlab 2600
Resumo:
This study attempts to fill the existing gap in the simulation of variable flow distribution systems through developing new pressure governing components. These components are able to capture the actual ever-changing system performance curve in variable flow distribution systems together with the prediction of controversial issues such as starving, over-flow and the lack of controllability on the flow rate of different branches in a hydronic system. The performance of the proposed components is verified using a case study under design and off-design circumstances. Full integration of the new components within the TRNSYS simulation package is another advantage of this study, which makes it more applicable for designers in both the design and commissioning of hydronic systems.
Resumo:
The use of a mesofluidic flow reactor is described for performing Curtius rearrangement reactions of carboxylic acids in the presence of diphenylphosphoryl azide and trapping of the intermediate isocyanates with various nucleophiles.
Resumo:
A sensitive and robust analytical method for spectrophotometric determination of ethyl xanthate, CH(3)CH(2)OCS(2)(-) at trace concentrations in pulp solutions from froth flotation process is proposed. The analytical method is based on the decomposition of ethyl xanthate. EtX(-), with 2.0 mol L(-1) HCl generating ethanol and carbon disulfide. CS(2). A gas diffusion cell assures that only the volatile compounds diffuse through a PTFE membrane towards an acceptor stream of deionized water, thus avoiding the interferences of non-volatile compounds and suspended particles. The CS(2) is selectively detected by UV absorbance at 206 nm (epsilon = 65,000 L mol(-1) cm(-1)). The measured absorbance is directly proportional to EtX(-) concentration present in the sample solutions. The Beer`s law is obeyed in a 1 x 10(-6) to 2 x 10(-4) mol L(-1) concentration range of ethyl xanthate in the pulp with an excellent correlation coefficient (r = 0.999) and a detection limit of 3.1 x 10(-7) mol L(-1), corresponding to 38 mu g L. At flow rates of 200 mu L min(-1) of the donor stream and 100 mu L min(-1) of the acceptor channel a sampling rate of 15 injections per hour could be achieved with RSD < 2.3% (n = 10, 300 mu L injections of 1 x 10(-5) mol L(-1) EtX(-)). Two practical applications demonstrate the versatility of the FIA method: (i) evaluation the free EtX(-) concentration during a laboratory study of the EtX(-) adsorption capacity on pulverized sulfide ore (pyrite) and (ii) monitoring of EtX(-) at different stages (from starting load to washing effluents) of a flotation pilot plant processing a Cu-Zn sulfide ore. (C) 2010 Elsevier By. All rights reserved.
Resumo:
Flow injection analysis (FIA) using a carbon film sensor for amperometric detection was explored for ambroxol analysis in pharmaceutical formulations. The specially designed flow cell designed in the lab generated sharp and reproducible current peaks, with a wide linear dynamic range from 5 x 10(-7) to 3.5 x 10(-4) mol L-1, in 0.1 mol L-1 sulfuric acid electrolyte, as well as high sensitivity, 0.110 A mol(-1) L cm(-2) at the optimized flow rate. A detection limit of 7.6 x 10(-8) mol L-1 and a sampling frequency of 50 determinations per hour were achieved, employing injected volumes of 100 mu L and a flow rate of 2.0 mL min(-1). The repeatability, expressed as R.S.D. for successive and alternated injections of 6.0 x 10(-6) and 6.0 x 10(-5) mol L-1 ambroxol solutions, was 3.0 and 1.5%, respectively, without any noticeable memory effect between injections. The proposed method was applied to the analysis of ambroxol in pharmaceutical samples and the results obtained were compared with UV spectrophotometric and acid-base titrimetric methods. Good agreement between the results utilizing the three methods and the labeled values was achieved, corroborating the good performance of the proposed electrochemical methodology for ambroxol analysis. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A sensitive flow-injection (FI) procedure with spectrophotometric detection in a micellar medium is proposed for the determination of novalgin. The method is based on the instantaneous formation of a red-orange product (lambda(max) = 510 nm) after the reaction between novalgin and p-dimethylaminocinnamaldehyde (p-DAC) in a dilute acid medium. The sensitivity of this reaction was increased by a factor of 5.6 in the presence of sodium dodecyl sulfate (SDS). Experimental design methodologies were used to optimize the chemical and FI variables. The calibration curve was linear in the range of 1.45 x 10(-6) to 2.90 x 10(-5) mol L-1 with an excellent correlation coefficient (r = 0.9999). The detection limit was 1.31 x 10(-7) mol L-1 (n = 20, RSD = 2.0%). No interferences were observed from the common excipients. The results obtained by the proposed method were favorably compared with those given by the iodometric reference method at 95% confidence level.
Resumo:
This paper deals with the development and optimization of an analytical procedure using ultrafiltration and a flow-injection system, and its application in in-situ experiments to characterize the lability and availability of metal species in humic-rich hydrocolloids. The on-line system consists of a tangential flow ultrafiltration device equipped with a 3-kDa filtration membrane. The concentration of free ions in the filtrate was determined by atomic-absorption spectrometry, assuming that metals not complexed by aquatic humic substances (AHS) were separated from the complexed species (M-AHS) retained by the membrane. For optimization, exchange experiments using Cu(II) solutions and AHS solutions doped with the metal ions Ni(II), Mn(II), Fe(III), Cd (II), and Zn(II) were carried out to characterize the stability of the metal-AHS complexes. The new procedure was then applied in-situ at a tributary of the Ribeira do Iguape river (Iguape, São Paulo State, Brazil) and evaluated using the ions Fe(III) and Mn(II), which are considered to be essential constituents of aquatic systems. From the exchange between metal-natural organic matter (M-NOM) and the Cu(II) ions it was concluded that Cu(II) concentrations > 485 mu g L(-1) were necessary to obtain maximum exchange of the complexes Mn-NOM and Fe-NOM, corresponding to 100% Mn and 8% Fe. Moreover, the new analytical procedure is simple and opens up new perspectives for understanding the complexation, transport, stability, and lability of metal species in humic-rich aquatic environments.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A flow-injection spectrophotometric procedure is proposed for methyldopa determination in pharmaceutical preparations. The determination is based on formation of a yellow product (measured at 410 nm) after complexation of methyldopa with molybdate. Under optimal conditions, Beer's law is obeyed in a concentration range of 50-200 mg l(-1) methyldopa. Typical correlation between absorbance and analyte concentration was 0.9999. Usual excipients used as additives in pharmaceuticals do not interfere with the proposed method. The analytical frequency was 210 h(-1) and the relative standard deviation (R.S.D.) was <= 2% for sample solution containing 150 mg l(-1) methyldopa (n = 11). The analytical results obtained in commercial formulations by applying the proposed FIA method were in good agreement with labeled values and those obtained by the Brazilian Pharmacopoeia procedure at 95% confidence level. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
Direct flow injection electrospray ionization ion trap tandem mass spectrometry (ESI-IT-MS/MS) was used to investigate the polyphenolic compounds present in an infusion from the barks of Hancornia speciosa Gom. (Apocynaceae), a native Brazilian plant popularly known as 'mangabeira', used as a source of nutrition and against gastric disorders. After a simple sample filtration pretreatment the characteristic fingerprint of the infusion was performed in negative ion ESI mode in a few minutes. At low capillary-voltage activation, the deprotonated molecules ([M-H](-)) were observed and using collision-induced dissociation the product ion spectra showed the presence of a homologous series of B-type proanthocyanidins, as well as another series containing their respective C-glycosylated derivatives, with a degree of polymerization from 1 up to 6 units of interlinked catechins. Therefore, direct flow injection allowed us to identify the key compounds without preparative isolation of the components. Copyright (C) 2007 John Wiley & Sons, Ltd.
Resumo:
A rapid and simple method for procaine determination was developed by flow injection analysis (FIA) using a screen-printed carbon electrode (SPCE) as amperometric detector. The present method is based on the amine/hydroxylamine oxidation from procaine monitored at 0.80 V on SPCE in sodium acetate solution pH 6.0. Using the best experimental conditions assigned as: pH 6.0, flow rate of 3.8 mL min(-1), sample volume of 100 mu L and analytical path of 30 cm it is possible to construct a linear calibration curve from 9.0 x 10(-6) to 1.0 x 10(-4) mol L-1. The relative standard deviation for 5.0 x 10(-5) mol L-1 procaine (15 repetitions using the same electrode) is 3.2% and detection limit calculated is 6.0 x 10(-6) mol L-1. Recoveries obtained for procaine gave a mean values from 94.8 to 102.3% and an analytical frequency of 36 injections per hour was achieved. The method was successfully applied for the determination of procaine in pharmaceutical formulation without any pre-treatment, which are in good accordance with the declared values of manufacturer and an official method based on spectrophotometric analysis. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A method based an ion exchange(IE)-atomic absorption spectrometry(AAS) coupled by flow techniques, allowing the determination of formation constants of, at least, the first species of complex systems, in aqueous solution, was developed.The IE-AAS coupling reduces significantly the number of experimental steps in comparison with IE batch methods, resulting in an important increase in analytical rate. The method is simple both from experimental and computational points of view, making possible its utilization by workers without special expertise in the field of complex equilibria in solution. on the other hand, taking into account mainly the amount of hollow cathode lamps available to date, the developed procedure may be applied, within certain limitations, to the study of many systems whose features prevent the use of traditional approaches.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A flow injection analysis (FIA) procedure for the speciation of Cr(III) and Cr(VI) using the 1,5-diphenylcarbazide (DPC) method is presented. As Cr(III) does not interfere in the Cr(VI) - DPC reaction, both Cr(VI) and total chromium [after the on-line oxidation of Cr(III) by Ce(IV)] are sequentially determined. Cr(III) is obtained by difference. Under the experimental conditions described, the calibration graphs are linear up to 2 μg mh1 of Cr(VI) and 4 μg ml-1 of Cr(III). The detection limits found were 18 ng ml -1 for Cr(VI) and 55 ng ml-1 for Cr(III), at a signal to noise ratio of 3. The common interfering elements in the Cr(VI) - DPC reaction were investigated under dynamic FIA conditions. The FIA method was also compared with the conventional spectrophotometric procedure.
Resumo:
A simple, rapid, and automated assay for hydrogen peroxide in pharmaceutical samples was developed by combining the multicommutation system with a chemiluminescence (CL) detector. The detection was performed using a spiral flow-cell reactor made from polyethylene tubing that was positioned in front of a photodiode. It allows the rapid mixing of CL reagent and analyte and simultaneous detection of the emitted light. The chemiluminescence was based on the reaction of luminol with hydrogen peroxide catalyzed by hexacyanoferrate(III). The feasibility of the flow system was ascertained by analyzing a set of pharmaceutical samples. A linear response within the range of 2.2-210 μmol l-1 H2O2 with a LD of 1.8 μmol l-1 H2O2 and coefficient of variations smaller than 0.8% for 1.0×10-5 mol l-1 and 6.8×10-5 mol l-1 hydrogen peroxide solutions (n=10) were obtained. Reagents consumption of 90 μg of luminol and 0.7 mg of hexacyanoferrate(III) per determination and sampling rate of 200 samples per hour were also achieved. Copyright © Taylor & Francis Group, LLC.