998 resultados para Containing Mcm-41
Resumo:
Detoxication (phase 2) enzymes, such as glutathione S-transferases (GSTs), NAD(P)H:(quinone-acceptor) oxidoreductase (QR), and UDP-glucuronsyltransferase, are induced in animal cells exposed to a variety of electrophilic compounds and phenolic antioxidants. Induction protects against the toxic and neoplastic effects of carcinogens and is mediated by activation of upstream electrophile-responsive/antioxidant-responsive elements (EpRE/ARE). The mechanism of activation of these enhancers was analyzed by transient gene expression of growth hormone reporter constructs containing a 41-bp region derived from the mouse GST Ya gene 5'-upstream region that contains the EpRE/ARE element and of constructs in which this element was replaced with either one or two consensus phorbol 12-tetradecanoate 13-acetate (TPA)-responsive elements (TREs). When these three constructs were compared in Hep G2 (human) and Hepa 1c1c7 (murine) hepatoma cells, the wild-type sequence was highly activated by diverse inducers, including tert-butylhydroquinone, Michael reaction acceptors, 1,2-dithiole-3-thione, sulforaphane,2,3-dimercapto-1-propanol, HgCl2, sodium arsenite, and phenylarsine oxide. In contrast, constructs with consensus TRE sites were not induced significantly. TPA in combination with these compounds led to additive or synergistic inductions of the EpRE/ARE construct, but induction of the TRE construct was similar to that induced by TPA alone. Transfection of the EpRE/ARE reporter construct into F9 cells, which lack endogenous TRE-binding proteins, produced large inductions by the same compounds, which also induced QR activity in these cells. We conclude that activation of the EpRE/ARE by electrophile and antioxidant inducers is mediated by EpRE/ARE-specific proteins.
Resumo:
A Rh phosphine complex, derived from the Wilkinson’s catalyst, has been immobilized by ion-exchange on the ammonium form of a Al-MCM-41 sample. Ammonium ions have been exchanged by cholamine ions, which act as an amine ligand, and then the Wilkinson’s catalyst has been immobilized by substitution of a phosphine ligand by the anchored amine. This is a novel immobilization procedure, as a ligand, instead of the whole complex, is tethered to the support by ion exchange. The obtained hybrid catalyst has been characterized by Elemental Analysis, DRIFTS and XPS. The quantitative exchange of ammonium by cholamine and coordination of Rh to amines has been observed. Most of the anchored Rh is considered to be coordinated to the ligand tethered to the support and a small proportion seems to be interacting with the protonated ligand or with the support surface. The catalyst has been tested in the hydrogenation of cyclohexene and in the hydroformylation of 1-octene. In the first case the catalyst is active and reusable, while a strong Rh leaching takes place in the second one.
Resumo:
El creciente desarrollo de la industria del cuero y textil en nuestro país, y específicamente en la provincia de Córdoba, ha hecho resurgir en los ultimos años una problemática aún no resuelta que es la elevada contaminación de los recursos hídricos. En ambas industrias, la operación de teñido involucra principalmente colorantes de tipo azoico los cuales son "no biodegradables" y se fragmentan liberando aminas aromáticas cancerígenas. Para abordar esta problemática, la fotocatálisis heterogénea aparece como una nueva tecnología que permitiría la completa mineralización de estos colorantes. A través de radiación y un fotocatalizador sólido adecuado se pueden generan radicales libres eficientes para la oxidación de materia orgánica (colorantes) en medio acuoso. En este sentido, se proponen tamices moleculares mesoporosos modificados con metales de transición (MT) como fotocatalizadores potencialmente aptos para la degradación de estos contaminantes. El propósito principal de este proyecto es el diseño, síntesis, caracterización y evaluación de materiales mesoporosos que presenten actividad fotocatalítica ya sea mediante la modificación de su estructura con diversos metales fotosensibles y/o empleándolos como soporte de óxido de titanio. Se pretende evaluar estos materiales en la degradación de colorantes intentando desplazar su fotosensibilidad hacia la radiación visible para desarrollar nuevas tecnologías con menor impacto ambiental y mayor aprovechamiento de la energía solar. Para ello se sintetizarán materiales del tipo MCM-41 modificados con distintos MT tales como Fe, Cr, Co, Ni y Zn mediante incorporación directa del ión metálico o impregnación. Al mismo tiempo, tanto estos últimos materiales como el MCM-41 silíceo serán empleados como soporte de TiO2. Sus propiedades fisicoquímicas se caracterizarán mediante distintas técnicas instrumentales y su actividad fotocatalítica se evaluará en la degradación de colorantes azoicos bajo radiación visible. Se seleccionará el catalizador más eficiente y se estudiarán los diversos factores que afectan el proceso de fotodegradación. Así mismo, el análisis de la concentración del colorante y los productos presentes en el medio en función del tiempo de reacción permitirá inferir sobre la cinética de la decoloración y postular posibles mecanismos de fotodegradación. Con esta propuesta se espera contribuír al desarrollo de un sector industrial importante en nuestra provincia como es el de las industrias del cuero y textil, mediante la generación de nuevas tecnologías que empleen la energía solar para la degradación de sus efluentes (colorantes). En este sentido, se espera desarrollar nuevos materiales optimizados para lograr la mayor eficiencia fotocatalítica. Esto conduciría entonces hacia la remediación de un problema ambiental de alto impacto tanto para nuestra provincia y nuestro país como para la población mundial, como es la contaminación de los recursos hídricos. Finalmente, con este proyecto se contribuirá a la formación de dos doctorandos y un maestrando, cuyos temas de tesis están vinculados con nuestro objeto de estudio.
Resumo:
Se estudiara la síntesis, caracterización y aplicación de Materiales Nanoscópicos (Nanoestructurados, MN y Nanocomposites, NC), con propiedades definidas en el campo de la Energía, Medio Ambiente y Bioingeniería, especialmente las MCM y SBA ( MCM-41 y MCM-48, SBA-1, SBA-3, SBA-15 y SBA-16, Silíceas o Al/Ga/Ti como Heteroátomo, y la Al-SBA-3, recientemente desarrollada por nosotros, primera publicación a nivel mundial). Se pondrá énfasis en el diseño, preparación y caracterización de sus réplicas con C (CMK-1 y CMK-3). Determinación y optimización de las estrategias de síntesis de MN y NC y Nano especies Activas en nuevos catalizadores (Ir/ TiO2, Pt/Pd etc.), cuyas propiedades fundamentales (estructurales, electrónicas, conductividad, actividad catalítica, etc.) sean aplicables en los Campos Citados. Comprensión de los parámetros que definen dichas propiedades, relación estructura/actividad, rediseño y aplicaciones de MN y NC en dos procesos específicos (de los cuales ya hemos publicado resultados): Energía y Medioambiente: 1) Almacenamiento de H2, Adsorción/Absorción de H2 en los MN Silíceos y Carbonosos y NC y Desarrollo de NC híbridos formados por reservorios en base a los MN por oclusión de nano-alambres moleculares de polímeros orgánicos, modificando las propiedades de conductividad / semiconductividad y adsorción de H2; 2) Estudio de las reacciones de hidrotratamiento catalítico (HDT), que comprende la hidrogenación, la hidrodesulfurizacion (HDS) y la hidrodenitrogenacion (HDN) de compuestos refractarios presentes en los cortes de combustibles. La determinación del mecanismo de las reacciones de HDS y HDN.
Resumo:
In this paper, we applied a version of the nonlocal density functional theory (NLDFT) accounting radial and longitudinal density distributions to study the adsorption and desorption of argon in finite as well as infinite cylindrical nanopores at 87.3 K. Features that have not been observed before with one-dimensional NLDFT are observed in the analysis of an inhomogeneous fluid along the axis of a finite cylindrical pore using the two-dimensional version of the NLDFT. The phase transition in pore is not strictly vapor-liquid transition as assumed and observed in the conventional version, but rather it exhibits a much elaborated feature with phase transition being complicated by the formation of solid phase. Depending on the pore size, there are more than one phase transition in the adsorption-desorption isotherm. The solid formation in finite pore has been found to be initiated by the presence of the meniscus. Details of the analysis of the extended version of NLDFT will be discussed in the paper. (C) 2004 American Institute of Physics.
Resumo:
The diffusion of hexane, heptane, octane, and decane in nanoporous MCM-41 silica at various temperatures is investigated by the zero-length-column method. The diffusion coefficients are derived by a complete-time-range analysis of desorption curves at different purge flow rates and temperatures. The results show that the calculated low-coverage diffusivity values decrease monotonically, and the derived Henry's law constants increase, as the carbon number of paraffins increases. The study reveals that transport is strongly influenced by intracrystalline diffusion and dominated by the sorbate-sorbent interaction. The diffusion activation energy and adsorption isosteric heat at zero loading increase monotonically with the carbon number of linear paraffins, but their ratio is essentially constant for each adsorbate compound.
Resumo:
We present a new version of non-local density functional theory (NL-DFT) adapted to description of vapor adsorption isotherms on amorphous materials like non-porous silica. The novel feature of this approach is that it accounts for the roughness of adsorbent surface. The solid–fluid interaction is described in the same framework as in the case of fluid–fluid interactions, using the Weeks–Chandler–Andersen (WCA) scheme and the Carnahan–Starling (CS) equation for attractive and repulsive parts of the Helmholtz free energy, respectively. Application to nitrogen and argon adsorption isotherms on non-porous silica LiChrospher Si-1000 at their boiling points, recently published by Jaroniec and co-workers, has shown an excellent correlative ability of our approach over the complete range of pressures, which suggests that the surface roughness is mostly the reason for the observed behavior of adsorption isotherms. From the analysis of these data, we found that in the case of nitrogen adsorption short-range interactions between oxygen atoms on the silica surface and quadrupole of nitrogen molecules play an important role. The approach presented in this paper may be further used in quantitative analysis of adsorption and desorption isotherms in cylindrical pores such as MCM-41 and carbon nanotubes.
Resumo:
We present results of application of the density functional theory (DFT) to adsorption and desorption in finite and infinite cylindrical pores accounting for the density distribution in radial and axial directions. Capillary condensation via formation of bridges is considered using canonical and grand canonical versions of the 2D DFT. The potential barrier of nucleation is determined as a function of the bulk pressure and the pore diameter. In the framework of the conventional assumptions on intermolecular interactions both 1D and 2D DFT versions lead to the same results and confirm the classical scenario of condensation and evaporation: the condensation occurs at the vapor-like spinodal point, and the evaporation corresponds to the equilibrium transition pressure. The analysis of experimental data on argon and nitrogen adsorption on MCM-41 samples seems to not completely corroborate this scenario, with adsorption branch being better described by the equilibrium pressure - diameter dependence. This points to the necessity of the further development of basic representations on the hysteresis phenomena.
Resumo:
Adsorption of nitrogen in spherical pores of FDU-1 silica at 77 K is considered by means of a nonlocal density functional theory (NLDFT) accounting for a disordered structure of pore walls. Pore size distribution analysis of various FDU-1 samples subject to different temperatures of calcination revealed three distinct groups of pores. The principal group of pores is identified as ordered spherical mesopores connected with each other by smaller interconnecting pores and irregular micropores present in the mesopore walls. To account for the entrances (connecting pores) into spherical mesopores, a concept of solid mass distribution with respect to the apparent density was introduced. It is shown that the introduction of the aforementioned distribution was sufficient to quantitatively describe experimental adsorption isotherms over the entire range of relative pressures spanning six decades.
Resumo:
A thermodynamic analysis of nitrogen adsorption in cylindrical pores of MCM-41 and SBA-15 samples at 77 K is presented within the framework of the Broekhoff and de Boer (BdB) theory. We accounted for the effect of the solid surface curvature on the potential exerted by the pore walls. The developed model is in quantitative agreement with the non-local density functional theory (NLDFT) for pores larger than 2 tun. This modified BdB theory accounting for the Curvature Dependent Potential (CDP-BdB) was applied to determine the pore size distribution (PSD) of a number of MCM-41 and SBA-15 samples on the basis of matching the equilibrium theoretical isotherm against the adsorption branch of the experimental isotherm. In all cases investigated the PSDs determined with the new approach are very similar to those determined with the non-local density functional theory also using the same basis of matching of theoretical isotherm against the experimental adsorption branch. The developed continuum theory is very simple in its utilization, suggesting that CDP-BdB could be used as an alternative tool to obtain PSD for mesoporous solids from the analysis of adsorption branch of adsorption isotherms of any sub-critical fluids.
Resumo:
In this paper, we present an analysis of argon adsorption in cylindrical pores having amorphous silica structure by means of a nonlocal density functional theory (NLDFT). In the modeling, we account for the radial and longitudinal density distributions, which allow us to consider the interface between the liquidlike and vaporlike fluids separated by a hemispherical meniscus in the canonical ensemble. The Helmholtz free energy of the meniscus was determined as a function of pore diameter. The canonical NLDFT simulations show the details of density rearrangement at the vaporlike and liquidlike spinodal points. The limits of stability of the smallest bridge and the smallest bubble were also determined with the canonical NLDFT. The energy of nucleation as a function of the bulk pressure and the pore diameter was determined with the grand canonical NLDFT using an additional external potential field. It was shown that the experimentally observed reversibility of argon adsorption isotherms at its boiling point up to the pore diameter of 4 nm is possible if the potential barrier of 22kT is overcome due to density fluctuations.
Resumo:
This paper presents a thermodynamic analysis of capillary condensation phenomena in cylindrical pores. Here, we modified the Broekhoff and de Boer (BdB) model for cylindrical pores accounting for the effect of the pore radius on the potential exerted by the pore walls. The new approach incorporates the recently published standard nitrogen and argon adsorption isotherm on nonporous silica LiChrospher Si-1000. The developed model is tested against the nonlocal density functional theory (NLDFT), and the criterion for this comparison is the condensation/evaporation pressure versus the pore diameter. The quantitative agreement between the NLDFT and the refined version of the BdB theory is ascertained for pores larger than 2 nm. The modified BdB theory was applied to the experimental adsorption branch of adsorption isotherms of a number of MCM-41 samples to determine their pore size distributions (PSDs). It was found that the PSDs determined with the new BdB approach coincide with those determined with the NLDFT (also using the experimental adsorption branch). As opposed to the NLDFT, the modified BdB theory is very simple in its utilization and therefore can be used as a convenient tool to obtain PSDs of all mesoporous solids from the analysis of the adsorption branch of adsorption isotherms of any subcritical fluids.
Resumo:
Adsorption of argon at its boiling point infinite cylindrical pores is considered by means of the non-local density functional theory (NLDFT) with a reference to MCM-41 silica. The NLDFT was adjusted to amorphous solids, which allowed us to quantitatively describe argon adsorption isotherm on nonporous reference silica in the entire bulk pressure range. In contrast to the conventional NLDFT technique, application of the model to cylindrical pores does not show any layering before the phase transition in conformity with experimental data. The finite pore is modeled as a cylindrical cavity bounded from its mouth by an infinite flat surface perpendicular to the pore axis. The adsorption of argon in pores of 4 and 5 nm diameters is analyzed in canonical and grand canonical ensembles using a two-dimensional version of NLDFT, which accounts for the radial and longitudinal fluid density distributions. The simulation results did not show any unusual features associated with accounting for the outer surface and support the conclusions obtained from the classical analysis of capillary condensation and evaporation. That is, the spontaneous condensation occurs at the vapor-like spinodal point, which is the upper limit of mechanical stability of the liquid-like film wetting the pore wall, while the evaporation occurs via a mechanism of receding of the semispherical meniscus from the pore mouth and the complete evaporation of the core occurs at the equilibrium transition pressure. Visualization of the pore filling and empting in the form of contour lines is presented.
Resumo:
A systematic study on the structural properties and external morphologies of large-pore mesoporous organosilicas synthesized using triblock copolymer EO20PO70EO20 as a template under low-acid conditions was carried out. By employing the characterization techniques of SAXS, FE-SEM, and physical adsorption of N-2 in combination with alpha(s)-plot method, the structural properties and external morphologies of large-pore mesoporous organosilicas were critically examined and compared with that of their pure-silica counterparts synthesized under similar conditions. It has been observed that unlike mesoporous pure silicas, the structural and morphological properties of mesoporous organosilicas are highly acid-sensitive. High-quality mesoporous organosilicas can only be obtained from synthesis gels with the molar ratios of HCl/H2O between 7.08 x 10(-4) and 6.33 x 10(-3), whereas mesoporous pure silicas with well-ordered structure can be obtained in a wider range of acid concentration. Simply by adjusting the HCl/H2O molar ratios, the micro-, meso-, and macroporosities of the organosilica materials can be finely tuned without obvious effect on their structural order. Such a behavior is closely related to their acid-controlled morphological evolution: from necklacelike fibers to cobweb-supported pearl-like particles and to nanosized particulates.
Resumo:
Equilibrium adsorption and desorption in mesoporous adsorbents is considered on the basis of rigorous thermodynamic analysis, in which the curvature-dependent solid-fluid potential and the compressibility of the adsorbed phase are accounted for. The compressibility of the adsorbed phase is considered for the first time in the literature in the framework of a rigorous thermodynamic approach. Our model is a further development of continuum thermodynamic approaches proposed by Derjaguin and Broekhoff and de Boer, and it is based on a reference isotherm of a non-porous material having the same chemical structure as that of the pore wall. In this improved thermodynamic model, we incorporated a prescription for transforming the solid-fluid potential exerted by the flat reference surface to the potential inside cylindrical and spherical pores. We relax the assumption that the adsorbed film density is constant and equal to that of the saturated liquid. Instead, the density of the adsorbed fluid is allowed to vary over the adsorbed film thickness and is calculated by an equation of state. As a result, the model is capable to describe the adsorption-desorption reversibility in cylindrical pores having diameter less than 2 nm. The generalized thermodynamic model may be applied to the pore size characterization of mesoporous materials instead of much more time-consuming molecular approaches. (c) 2005 Elsevier B.V. All rights reserved.