943 resultados para Contact area


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The initial aim of this project was to develop a non-contact fibre optic based displacement sensor to operate in the harsh environment of a 'Light Gas Gun' (LGG), which can 'fire' small particles at velocities ranging from 1-8.4 km/s. The LGG is used extensively for research in aerospace to analyze the effects of high speed impacts on materials. Ideally the measurement should be made close to the centre of the impact to minimise corruption of the data from edge effects and survive the impact. A further requirement is that it should operate at a stand-off distance of ~ 8cm. For these reasons we chose to develop a pseudo con-focal intensity sensor, which demonstrated resolution comparable with conventional PVDF sensors combined with high survivability and low cost. A second sensor was developed based on 'Fibre Bragg Gratings' (FBG) which although requiring contact with the target the low weight and very small contact area had minimal effect on the dynamics of the target. The FBG was mounted either on the surface of the target or tangentially between a fixed location. The output signals from the FBG were interrogated in time by a new method. Measurements were made on composite and aluminium plates in the LGG and on low speed drop tests. The particle momentum for the drop tests was chosen to be similar to that of the particles used in the LGG.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A three-dimensional finite element analysis (FEA) model with elastic-plastic anisotropy was built to investigate the effects of anisotropy on nanoindentation measurements for cortical bone. The FEA model has demonstrated a capability to capture the cortical bone material response under the indentation process. By comparison with the contact area obtained from monitoring the contact profile in FEA simulations, the Oliver-Pharr method was found to underpredict or overpredict the contact area due to the effects of anisotropy. The amount of error (less than 10% for cortical bone) depended on the indentation orientation. The indentation modulus results obtained from FEA simulations at different surface orientations showed a trend similar to experimental results and were also similar to moduli calculated from a mathematical model. The Oliver-Pharr method has been shown to be useful for providing first-order approximations in the analysis of anisotropic mechanical properties of cortical bone, although the indentation modulus is influenced by anisotropy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The initial aim of this project was to develop a non-contact fibre optic based displacement sensor to operate in the harsh environment of a 'Light Gas Gun' (LGG), which can 'fire' small particles at velocities ranging from 1-8.4 km/s. The LGG is used extensively for research in aerospace to analyze the effects of high speed impacts on materials. Ideally the measurement should be made close to the centre of the impact to minimise corruption of the data from edge effects and survive the impact. A further requirement is that it should operate at a stand-off distance of ~ 8cm. For these reasons we chose to develop a pseudo con-focal intensity sensor, which demonstrated resolution comparable with conventional PVDF sensors combined with high survivability and low cost. A second sensor was developed based on 'Fibre Bragg Gratings' (FBG) which although requiring contact with the target the low weight and very small contact area had minimal effect on the dynamics of the target. The FBG was mounted either on the surface of the target or tangentially between a fixed location. The output signals from the FBG were interrogated in time by a new method. Measurements were made on composite and aluminium plates in the LGG and on low speed drop tests. The particle momentum for the drop tests was chosen to be similar to that of the particles used in the LGG.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Advances in multiscale material modeling of structural concrete have created an upsurge of interest in the accurate evaluation of mechanical properties and volume fractions of its nano constituents. The task is accomplished by analyzing the response of a material to indentation, obtained as an outcome of a nanoindentation experiment, using a procedure called the Oliver and Pharr (OP) method. Despite its widespread use, the accuracy of this method is often questioned when it is applied to the data from heterogeneous materials or from the materials that show pile-up and sink-in during indentation, which necessitates the development of an alternative method. ^ In this study, a model is developed within the framework defined by contact mechanics to compute the nanomechanical properties of a material from its indentation response. Unlike the OP method, indentation energies are employed in the form of dimensionless constants to evaluate model parameters. Analysis of the load-displacement data pertaining to a wide range of materials revealed that the energy constants may be used to determine the indenter tip bluntness, hardness and initial unloading stiffness of the material. The proposed model has two main advantages: (1) it does not require the computation of the contact area, a source of error in the existing method; and (2) it incorporates the effect of peak indentation load, dwelling period and indenter tip bluntness on the measured mechanical properties explicitly. ^ Indentation tests are also carried out on samples from cement paste to validate the energy based model developed herein by determining the elastic modulus and hardness of different phases of the paste. As a consequence, it has been found that the model computes the mechanical properties in close agreement with that obtained by the OP method; a discrepancy, though insignificant, is observed more in the case of C-S-H than in the anhydrous phase. Nevertheless, the proposed method is computationally efficient, and thus it is highly suitable when the grid indentation technique is required to be performed. In addition, several empirical relations are developed that are found to be crucial in understanding the nanomechanical behavior of cementitious materials.^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

With an increasing number of mature fields, heavy oil recovery has performed one of the great challenges of the oil industry. The Brazilian Northeast, for example, has numerous heavy oil reservoirs are explored with the use of thermal methods. Among the types of methods used for heavy oil, there is the method of in-situ combustion, a technique in which heat is produced within the container, unlike the injection of heated fluid when the heat is generated at the surface and transported to the reservoir. In this type of process, it is common to use vertical wells as injectors and producers. However, methods which use horizontal wells like oil producers are increasingly studied because of greater contact area between the formation and combustion front. Thus, the main objective of this work was to study the different configurations of wells (CIS THAITM and CAGD) in the process of in-situ combustion in oil recovery using a semi-synthetic tank with Brazilian Northeast features. The method "toe-to-heel air injection" (THAITM) is a process of enhanced oil recovery, which is the integration of in-situ combustion with technological advances in drilling horizontal wells. This method uses horizontal wells such as oil producers, keeping vertical injection wells for injecting air. The oil drain process by differential gravitational assisted with combustion (CAGD) is an integrated, in this configuration the horizontal injector well is drilled at the top formation with a horizontal production well in the lower section. The simulations were performed in a commercial program of thermal processes, called "STARS" (Steam, Thermal, and Advanced Processes Reservoir Simulator), the company CMG (Computer Modelling Group). An analysis of the air flow injection was performed and it was found that each method had a maximum injection to the base model, a show that through this air injection limit was reduced cumulative production of oil. Analyses of operating parameters were used: injection flow, configuration and completion of wells. In the sensitivity analysis we found that the air injection flow showed greater influence on THAI method, since the CIS method the completion of the wells was the most influential parameter and CAGD configuration wells showed the greatest influence in the recovered fraction. The economic results have shown that the best case obtained in CAGD method because, despite having higher initial cost showed the best financial return compared to the best cases the CIS and THAI.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

With an increasing number of mature fields, heavy oil recovery has performed one of the great challenges of the oil industry. The Brazilian Northeast, for example, has numerous heavy oil reservoirs are explored with the use of thermal methods. Among the types of methods used for heavy oil, there is the method of in-situ combustion, a technique in which heat is produced within the container, unlike the injection of heated fluid when the heat is generated at the surface and transported to the reservoir. In this type of process, it is common to use vertical wells as injectors and producers. However, methods which use horizontal wells like oil producers are increasingly studied because of greater contact area between the formation and combustion front. Thus, the main objective of this work was to study the different configurations of wells (CIS THAITM and CAGD) in the process of in-situ combustion in oil recovery using a semi-synthetic tank with Brazilian Northeast features. The method "toe-to-heel air injection" (THAITM) is a process of enhanced oil recovery, which is the integration of in-situ combustion with technological advances in drilling horizontal wells. This method uses horizontal wells such as oil producers, keeping vertical injection wells for injecting air. The oil drain process by differential gravitational assisted with combustion (CAGD) is an integrated, in this configuration the horizontal injector well is drilled at the top formation with a horizontal production well in the lower section. The simulations were performed in a commercial program of thermal processes, called "STARS" (Steam, Thermal, and Advanced Processes Reservoir Simulator), the company CMG (Computer Modelling Group). An analysis of the air flow injection was performed and it was found that each method had a maximum injection to the base model, a show that through this air injection limit was reduced cumulative production of oil. Analyses of operating parameters were used: injection flow, configuration and completion of wells. In the sensitivity analysis we found that the air injection flow showed greater influence on THAI method, since the CIS method the completion of the wells was the most influential parameter and CAGD configuration wells showed the greatest influence in the recovered fraction. The economic results have shown that the best case obtained in CAGD method because, despite having higher initial cost showed the best financial return compared to the best cases the CIS and THAI.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A large series of laboratory ice crushing experiments was performed to investigate the effects of external boundary condition and indenter contact geometry on ice load magnitude under crushing conditions. Four boundary conditions were considered: dry cases, submerged cases, and cases with the presence of snow and granular ice material on the indenter surface. Indenter geometries were a flat plate, wedge shaped indenter, (reverse) conical indenter, and spherical indenter. These were impacted with artificially produced ice specimens of conical shape with 20° and 30° cone angles. All indenter – ice combinations were tested in dry and submerged environments at 1 mm/s and 100 mm/s indentation rates. Additional tests with the flat indentation plate were conducted at 10 mm/s impact velocity and a subset of scenarios with snow and granular ice material was evaluated. The tests were performed using a material testing system (MTS) machine located inside a cold room at an ambient temperature of - 7°C. Data acquisition comprised time, vertical force, and displacement. In several tests with the flat plate and wedge shaped indenter, supplementary information on local pressure patterns and contact area were obtained using tactile pressure sensors. All tests were recorded with a high speed video camera and still photos were taken before and after each test. Thin sections were taken of some specimens as well. Ice loads were found to strongly depend on contact condition, interrelated with pre-existing confinement and indentation rate. Submergence yielded higher forces, especially at the high indentation rate. This was very evident for the flat indentation plate and spherical indenter, and with restrictions for the wedge shaped indenter. No indication was found for the conical indenter. For the conical indenter it was concluded that the structural restriction due to the indenter geometry was dominating. The working surface for the water to act was not sufficient to influence the failure processes and associated ice loads. The presence of snow and granular ice significantly increased the forces at the low indentation rate (with the flat indentation plate) that were higher compared to submerged cases and far above the dry contact condition. Contact area measurements revealed a correlation of higher forces with a concurrent increase in actual contact area that depended on the respective boundary condition. In submergence, ice debris constitution was changed; ice extrusion, as well as crack development and propagation were impeded. Snow and granular ice seemed to provide additional material sources for establishing larger contact areas. The dry contact condition generally had the smallest real contact area, as well as the lowest forces. The comparison of nominal and measured contact areas revealed distinct deviations. The incorporation of those differences in contact process pressures-area relationships indicated that the overall process pressure was not substantially affected by the increased loads.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A perda de dentes além de afectar a mastigação e a estética, altera também o equilíbrio do sistema estomatognático, observando-se de imediato alterações na posição dos dentes adjacentes e dos dentes oponentes. Torna-se, portanto, imprescindível para a reposição da saúde oral do paciente a reabilitação com recurso a próteses fixas ou removíveis. No que diz respeito às próteses parciais removíveis (PPR´s) estas visam a substituição dos dentes perdidos, sendo facilmente removidas e inseridas pelo paciente, sem qualquer intervenção do médico dentista e, apoiam-se directamente na mucosa e nos dentes. Enquanto as PPR´s acrílicas são suportadas pela mucosa, mediante uma ampla área de contacto, as próteses esqueléticas são suportadas pelos dentes pilares através da colocação de retentores. No caso específico das PPR´s, é fundamental que o profissional de saúde tenha em consideração a importância do planeamento correcto e adequado da reabilitação oral. Para isso, pode e deve utilizar o paralelómetro, determinando assim correctamente a localização dos planos-guia, dos apoios e retentores necessários. Guiando-se por estes princípios fundamentais, qualquer reabilitação com recurso às PPR´s pode ser bem sucedida quer a nível estético quer a nível funcional.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Stromules are motile extensions of the plastid envelope membrane, whose roles are not fully understood. They are present on all plastid types but are more common and extensive on non-green plastids that are sparsely distributed within the cell. During tomato fruit ripening, chloroplasts in the mesocarp tissue differentiate into chromoplasts and undergo major shifts in morphology. In order to understand what factors regulate stromule formation, we analysed stromule biogenesis in tobacco hypocotyls and in two distinct plastid populations in tomato mesocarp. We show that increases in stromule length and frequency are correlated with chromoplast differentiation, but only in one plastid population where the plastids are larger and less numerous. We used tobacco hypocotyls to confirm that stromule length increases as plastids become further apart, suggesting that stromules optimise the plastid-cytoplasm contact area. Furthermore, we demonstrate that ectopic chloroplast components decrease stromule formation on tomato fruit chromoplasts, whereas preventing chloroplast development leads to increased numbers of stromules. Inhibition of fruit ripening has a dramatic impact on plastid and stromule morphology, underlining that plastid differentiation status, and not cell type, is a significant factor in determining the extent of plastid stromules. By modifying the plastid surface area, we propose that stromules enhance the specific metabolic activities of plastids. This is an electronic version of an Article published in The Plant Journal, August 2004, Volume 39, pp. 655-667. Copyright 2004 Blackwell Publishing Ltd and The Society for Experimental Biology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Ceramic materials are used in a growing proportion of hip joint prostheses due to their wear resistance and biocompatibility properties. However, ceramics have not been applied successfully in total knee joint endoprostheses to date. One reason for this is that with strict surface quality requirements, there are significant challenges with regard to machining. High-toughness bioceramics can only be machined by grinding and polishing processes. The aim of this study was to develop an automated process chain for the manufacturing of an all-ceramic knee implant. Methods: A five-axis machining process was developed for all-ceramic implant components. These components were used in an investigation of the influence of surface conformity on wear behavior under simplified knee joint motion. Results: The implant components showed considerably reduced wear compared to conventional material combinations. Contact area resulting from a variety of component surface shapes, with a variety of levels of surface conformity, greatly influenced wear rate. Conclusions: It is possible to realize an all-ceramic knee endoprosthesis device, with a precise and affordable manufacturing process. The shape accuracy of the component surfaces, as specified by the design and achieved during the manufacturing process, has a substantial influence on the wear behavior of the prosthesis. This result, if corroborated by results with a greater sample size, is likely to influence the design parameters of such devices.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Liquid-solid interactions become important as dimensions approach mciro/nano-scale. This dissertation focuses on liquid-solid interactions in two distinct applications: capillary driven self-assembly of thin foils into 3D structures, and droplet wetting of hydrophobic micropatterned surfaces. The phenomenon of self-assembly of complex structures is common in biological systems. Examples include self-assembly of proteins into macromolecular structures and self-assembly of lipid bilayer membranes. The principles governing this phenomenon have been applied to induce self-assembly of millimeter scale Si thin films into spherical and other 3D structures, which are then integrated into light-trapping photovoltaic (PV) devices. Motivated by this application, we present a generalized analytical study of the self-folding of thin plates into deterministic 3D shapes, through fluid-solid interactions, to be used as PV devices. This study consists of developing a model using beam theory, which incorporates the two competing components — a capillary force that promotes folding and the bending rigidity of the foil that resists folding into a 3D structure. Through an equivalence argument of thin foils of different geometry, an effective folding parameter, which uniquely characterizes the driving force for folding, has been identified. A criterion for spontaneous folding of an arbitrarily shaped 2D foil, based on the effective folding parameter, is thus established. Measurements from experiments using different materials and predictions from the model match well, validating the assumptions used in the analysis. As an alternative to the mechanics model approach, the minimization of the total free energy is employed to investigate the interactions between a fluid droplet and a flexible thin film. A 2D energy functional is proposed, comprising the surface energy of the fluid, bending energy of the thin film and gravitational energy of the fluid. Through simulations with Surface Evolver, the shapes of the droplet and the thin film at equilibrium are obtained. A critical thin film length necessary for complete enclosure of the fluid droplet, and hence successful self-assembly into a PV device, is determined and compared with the experimental results and mechanics model predictions. The results from the modeling and energy approaches and the experiments are all consistent. Superhydrophobic surfaces, which have unique properties including self-cleaning and water repelling are desired in many applications. One excellent example in nature is the lotus leaf. To fabricate these surfaces, well designed micro/nano- surface structures are often employed. In this research, we fabricate superhydrophobic micropatterned Polydimethylsiloxane (PDMS) surfaces composed of micropillars of various sizes and arrangements by means of soft lithography. Both anisotropic surfaces, consisting of parallel grooves and cylindrical pillars in rectangular lattices, and isotropic surfaces, consisting of cylindrical pillars in square and hexagonal lattices, are considered. A novel technique is proposed to image the contact line (CL) of the droplet on the hydrophobic surface. This technique provides a new approach to distinguish between partial and complete wetting. The contact area between droplet and microtextured surface is then measured for a droplet in the Cassie state, which is a state of partial wetting. The results show that although the droplet is in the Cassie state, the contact area does not necessarily follow Cassie model predictions. Moreover, the CL is not circular, and is affected by the micropatterns, in both isotropic and anisotropic cases. Thus, it is suggested that along with the contact angle — the typical parameter reported in literature quantifying wetting, the size and shape of the contact area should also be presented. This technique is employed to investigate the evolution of the CL on a hydrophobic micropatterned surface in the cases of: a single droplet impacting the micropatterned surface, two droplets coalescing on micropillars, and a receding droplet resting on the micropatterned surface. Another parameter which quantifies hydrophobicity is the contact angle hysteresis (CAH), which indicates the resistance of the surface to the sliding of a droplet with a given volume. The conventional methods of using advancing and receding angles or tilting stage to measure the resistance of the micropatterned surface are indirect, without mentioning the inaccuracy due to the discrete and stepwise motion of the CL on micropillars. A micronewton force sensor is utilized to directly measure the resisting force by dragging a droplet on a microtextured surface. Together with the proposed imaging technique, the evolution of the CL during sliding is also explored. It is found that, at the onset of sliding, the CL behaves as a linear elastic solid with a constant stiffness. Afterwards, the force first increases and then decreases and reaches a steady state, accompanied with periodic oscillations due to regular pinning and depinning of the CL. Both the maximum and steady state forces are primarily dependent on area fractions of the micropatterned surfaces in our experiment. The resisting force is found to be proportional to the number of pillars which pin the CL at the trailing edge, validating the assumption that the resistance mainly arises from the CL pinning at the trailing edge. In each pinning-and-depinning cycle during the steady state, the CL also shows linear elastic behavior but with a lower stiffness. The force variation and energy dissipation involved can also be determined. This novel method of measuring the resistance of the micropatterned surface elucidates the dependence on CL pinning and provides more insight into the mechanisms of CAH.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The metalceramic crowns are usually used in dentistry because they provide a resistant structure due to its metallic base and its aesthetics from the porcelain that recovers this structure. To manufacture these crowns, a series of stages should be accomplished in the prosthetic laboratories, and many variables can influence its success. Changes in these variables cause alterations in the metallic alloy and in the porcelain, so, as consequence, in the adhesion between them. The composition of the metal alloy can be modified by recasting alloys, a common practice in some prosthetic laboratories. The aim of this paper is to make a systematic study investigating metalceramic crowns as well as analyzing the effect of recasting Ni-Cr alloys. Another variable which can influence the mechanism of metalceramic union is the temperature used in firing porcelain procedure. Each porcelain has to be fired in a fixed temperature which is determined by the manufacturer and its change can cause serious damages. This research simulate situations that may occur on laboratory procedures and observe their consequences in the quality of the metalceramic union. A scanning eletron microscopy and an optic microscopy were accomplish to analyse the metal-ceramic interface. No differences have been found when remelting alloys were used. The microhardness were similar in Ni-Cr alloys casted once, twice and three times. A wettability test was accomplished using a software developed at the Laboratório de Processamento de Materiais por Plasma, on the Universidade Federal do Rio Grande do Norte. No differences were found in the contact angle between the solid surface (metallic substratum) and the tangencial plane to the liquid surface (opaque). To analyse if the temperature of porcelain firing procedure could influence the contact area between metal and porcelain, a variation in its final temperature was achieve from 980° to 955°C. Once more, no differences have been found

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O presente estudo teve como principal objetivo a descrição, a análise e a comparação de parâmetros relacionados com o apoio plantar em idosos, através do método da baropodometria eletrónica, que oferece a avaliação das variáveis temporais e espaciais na postura estática e na marcha. Ademais, teve a finalidade de medir e comparar a distribuição da pressão plantar num grupo de idosos, institucionalizados e não institucionalizados, com e sem historial de quedas nos últimos 12 meses, para verificar se há um padrão comum ou divergente de apoio plantar, aspetos biomecânicos e diferenças significativas na marcha entre estes dois grupos e sua relação com a ocorrência de quedas. A amostra foi composta por 160 idosos, 80 institucionalizados e 80 não institucionalizados, onde foi realizado um levantamento das variáveis sociodemográficas como: idade, género, o índice de massa corporal (IMC), a ocorrência de quedas nos últimos 12 meses, a existência de patologias e a prática de atividade física. Foram analisadas, através da plataforma de pressão, a distribuição das pressões plantares, os picos de pressão plantar média e máxima, área de superfície plantar e a largura da base de sustentação na postura estática e, relativamente às variáveis temporais na postura dinâmica, foram avaliadas a duração do passo e o tempo de contato plantar, no momento da fase de apoio e propulsão da marcha. Foi analisada a correlação destas variáveis com a ocorrência de quedas. Foram identificados maiores valores de pressão média e máxima, na postura estática e dinâmica, nos idosos não institucionalizados. Na comparação entre os grupos, foram encontradas diferenças estatisticamente significativas em grande parte das variáveis na postura estática, especialmente aumento da largura da base (p=0,048) e, na postura dinâmica, a duração do passo e do tempo de contato do pé no solo (p=0,000) foram maiores nos idosos institucionalizados. O avançar da idade, o aumento na duração do passo e do tempo de contato do pé no solo, bem como a diminuição dos valores das pressões plantares apresentaram correlação com a ocorrência de quedas na amostra total de idosos, especialmente nos idosos institucionalizados. Entretanto, as variáveis índice de massa corporal e largura da base de sustentação não influenciaram na ocorrência de quedas na amostra total de idosos. Estes resultados demonstram a importância da análise do apoio plantar em idosos, pois alterações na distribuição das pressões plantares podem constituir um fator de risco para quedas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study investigated the effect of plasma treatment on changes of surface wettability of wood flooring from two Brazilian tropical species, Hymenaea spp. (rode locus) and Tabebuia spp. (lapacho). Wood flooring samples were plasma treated at low pressure in a helium atmosphere. Energy level was set at 100 W and four glow discharge times (5, 15, 30 and 45 s) were tested. Changes in wettability were investigated by measuring apparent contact angle, droplet volume and spreading contact area. The results showed less susceptibility of lapacho wood to the plasma treatments, while reduction of apparent contact angle in rode locus wood reached up to 76% for longer discharge times. In general, discharge time of 15 s produced the same effect as discharge of 45 s on wettability, which is important for industrial applications. Visual analyses revealed increase of water droplet spreading on lapacho wood surface, even though the variation of spreading contact area was not significant. Plasma treatment is feasible to improve wettability of tropical woods. Nevertheless, these findings should be investigated further due to the intrinsic characteristics of woods from tropical species.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objectives. To evaluate the performance of the dynamic-area high-speed videokeratoscopy technique in the assessment of tear film surface quality with and without the presence of soft contact lenses on eye. Methods. Retrospective data from a tear film study using basic high-speed videokeratoscopy, captured at 25 frames per second, (Kopf et al., 2008, J Optom) were used. Eleven subjects had tear film analysis conducted in the morning, midday and evening on the first and seventh day of one week of no lens wear. Five of the eleven subjects then completed an extra week of hydrogel lens wear followed by a week of silicone hydrogel lens wear. Analysis was performed on a 6 second period of the inter-blink recording. The dynamic-area high-speed videokeratoscopy technique uses the maximum available area of Placido ring pattern reflected from the tear interface and eliminates regions of disturbance due to shadows from the eyelashes. A value of tear film surface quality was derived using image rocessing techniques, based on the quality of the reflected ring pattern orientation. Results. The group mean tear film surface quality and the standard deviations for each of the conditions (bare eye, hydrogel lens, and silicone hydrogel lens) showed a much lower coefficient of variation than previous methods (average reduction of about 92%). Bare eye measurements from the right and left eyes of eleven individuals showed high correlation values (Pearson’s correlation r = 0.73, p < 0.05). Repeated measures ANOVA across the 6 second period of measurement in the normal inter-blink period for the bare eye condition showed no statistically significant changes. However, across the 6 second inter-blink period with both contact lenses, statistically significant changes were observed (p < 0.001) for both types of contact lens material. Overall, wearing hydrogel and silicone hydrogel lenses caused the tear film surface quality to worsen compared with the bare eye condition (repeated measures ANOVA, p < 0.0001 for both hydrogel and silicone hydrogel). Conclusions. The results suggest that the dynamic-area method of high-speed videokeratoscopy was able to distinguish and quantify the subtle, but systematic worsening of tear film surface quality in the inter-blink interval in contact lens wear. It was also able to clearly show a difference between bare eye and contact lens wearing conditions.