998 resultados para Conocimiento de geometría


Relevância:

20.00% 20.00%

Publicador:

Resumo:

La enseñanza de la geometría es materia de muchos estudios y aproximaciones. En trabajos considerados para este taller (Bermúdez,1996; Flores y Barrera,2002; Nolé, 2001; Siñeriz,2002; Gutiérrez y Jaime,1994), se percibe el interés de docentes e investigadores latinoamericanos en generar propuestas que permitan mejorar su enseñanza. En general, éstas parten del modelo Van Hiele, y se reportan propuestas a alumnos (Bermúdez, 1996) y profesores (Flores y Barrera, 2002) en los cuales se exploran dificultades de unos y otros para acceder a los distintos niveles de aprendizaje. Así, se propuso este taller donde el participante pudo experimentar el proceso de conjetura y demostración, para trabajar en el nivel 4 del modelo, del que se registran pocas propuestas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este reporte trata de una investigación cooperativa cuyo tema es la comparación de la enseñanza de la geometría en Chile y en Francia (proyecto ECOS-CONYCIT). Después de definir nuestra metodología por zooms sucesivos, presentamos las mayores diferencias que encontramos entre los dos países. Estas diferencias conciernen a los ámbitos siguientes: la concepción de la geometría, los aspectos de la actividad matemática puestos en evidencia, la organización del aprendizaje, la extensión de los programas, la importancia dada a las aplicaciones de matemáticas y a la modelación. Los trabajos de C.Houdement y A.Kuzniak sobre los paradigmas geométricos nos permiten analizar las concepciones de la geometría.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Los conocimientos geométricos aparecen en las distintas culturas desde el principio, quizá unidos con los conceptos de belleza y armonía. En este trabajo se presenta un ejemplo de cómo este abordaje se puede llevar a cabo en la escuela en el nivel medio ligado con su aparición. Es posible encontrar múltiples ejemplos de distintos tipos de aplicaciones en los que los objetos geométricos y sus propiedades se hacen necesarios para estudiar las formas. Las catedrales góticas suministran un bello ejemplo en el que la geometría aparece no sólo en las formas de las construcciones arquitectónicas, sino en particular en las composiciones artísticas de las ventanas. Se propone realizar un análisis de cuáles fueron los conceptos geométricos que manejaron los constructores para lograr estas obras de arte.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En el presente documento desarrollaremos los siguientes tópicos, la geometría y su importancia, modelo de enseñanza de la geometría, importancia de los materiales didácticos en el aprendizaje de la geometría, aprendiendo geometría con materiales didácticos, aproximación de las nuevas tecnologías y herramientas para la geometría. Los materiales o recursos didácticos adecuados cobran una especial importancia en su faceta de motivadores del proceso formativo del niño y niña dado que fomentan la exploración, manipulación y comprensión; de modo tal que, efectivamente, favorecen el proceso de enseñanza-aprendizaje de las Matemáticas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Se muestra la construcción de algunas cónicas por medio del software de geometría dinámica llamado RyC. Una de las principales ventajas de esta herramienta es que permite animar las construcciones geométricas conservando sus propiedades básicas, es decir, que le agrega movimiento a la clásica geometría euclidiana.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tomando el aprendizaje como participación en prácticas discursivas, presentamos un estudio sobre el aprendizaje de la Geometría en clases de secundaria con alumnado en situación de riesgo social. Bajo el supuesto del uso de la tecnología como promotor de participación, se diseñó e implementó una secuencia didáctica en un entorno de geometría dinámica. En el análisis de casos de estudiantes se consideraron aspectos cognitivos, afectivos e instrumentales de modo integrado. En este informe se ilustran dos resultados derivados del desarrollo de un caso. Por un lado, la dificultad por definir la noción de incentro se asocia a un uso del entorno informático poco significativo matemáticamente. Por otro, el rechazo a la exposición pública en la pizarra digital interactiva se asocia a la experiencia de dificultades en procesos de pensamiento matemático.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lo social en la didáctica de la matemática ha logrado datos relevantes sobre la construcción del saber matemático y su ingreso al sistema didáctico. Con ello, se han marcado directrices para entender la complejidad del conocimiento matemático escolar y la articulación con las actividades y prácticas del humano para conocer. Se ha entendido lo que el humano organiza está fuera de la estructura matemática pero es fundamental para que ésta se desarrolle, de ahí la importancia del papel que debe desempeñar la reconstrucción de significados y de argumentos en el sistema didáctico.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este trabajo es parte de un proyecto de investigación sobre la aplicación de tecnología computacional en la enseñanza y aprendizaje de matemáticas con alumnos de nivel medio básico o secundaria (séptimo a noveno grado) y nivel medio superior o bachillerato (décimo a doceavo grado), en particular, trata de entender la función mediadora del efecto de “arrastre” del software de geometría dinámica en la cognición de sujetos que estudian las nociones de variación y variable. Aquí reportamos los resultados de una exploración, usando Cabri, en el aprendizaje de esas nociones con estudiantes de nivel medio básico de 13-14 años de edad. Se describen las actividades, las respuestas de los estudiantes y una experiencia que sugiere el potencial de la verbalización de los resultados por los estudiantes en el proceso de simbolización algebraica.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Se reporta una investigación realizada con alumnos de 15- 16 años sobre los algoritmos de construcción de un Arco Capaz de segmento y ángulo dado. Se propuso a los alumnos un problema cuya solución óptima es un Arco Capaz de segmento y ángulo dado, y se les requirió luego que construyeran dicho arco utilizando regla, compás y semicírculo. Los alumnos idearon diversas construcciones para el Arco Capaz pero en ningún momento aparece la construcción tradicional de Euclides. Básicamente, la idea que usan los estudiantes para construir el Arco Capaz, es la de obtener un triángulo cualquiera tal que uno de sus ángulos sea el ángulo dado para luego determinar su circuncentro y trazar el Arco.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La utilización de una herramienta nueva, de cualquier tipo que sea, necesita de una reflexión sobre lo que hacemos, muchas veces cambia nuestro modo de trabajar (actitud) y hace surgir problemas sobre las verdades que teníamos. En matemática los conocimientos utilizados pueden ser diferentes: comparar una construcción geométrica con regla y compás o con regla y escuadra (mecánica) o solamente con compás. En este curso se explora de manera activa el software Cabri II. En una primera etapa se realiza la construcción de triángulos -sus elementos secundarios- y circunferencias inscritas y circunscritas así como exploraciones de simetría. En una segunda etapa se elaboran macro construcciones o construcciones que podemos grabar, para luego reutilizar en figuras más complejas, sin necesidad de rehacerlas. A través de la exploración ya descrita se reflexiona sobre el aporte de esta herramienta al quehacer pedagógico y/o científico. El uso del software es muy cercano a la forma de pensar en la geometría clásica, lo que permite a los estudiantes acercarse a esta disciplina y hacer conjeturas. Corresponde advertir que, como Cabri II no es un software de dibujo ni de demostración sino que está basado en un ambiente numérico, hay errores de aproximación. aunque leves. Se inicia el curso explicando brevemente el funcionamiento del software Cabri II para pasar a realizar actividades de construcción y comprobación de relaciones geométricas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uno de los desafíos esenciales de la enseñanza de las matemáticas consiste en la utilización de métodos y medios de enseñanza que propicien en los alumnos la formación de un conocimiento científico. Se asume como referente teórico los métodos del conocimiento científico de las ciencias pedagógicas, teniendo en cuenta que cuando el conocimiento que se quiere formar es científico, tiene que crear una actividad cognoscitiva nueva, lo que hace que la enseñanza y los medios de enseñanza que utilicemos sean diferentes, particularmente por el lenguaje que tiene la matemática, que ha de ser el lenguaje científico donde, además del habitual, se da el simbólico. El objetivo del trabajo es fundamentar la utilización de las calculadoras gráficas como un medio muy importante y actual para lograr formar en los alumnos un conocimiento científico de las matemáticas, y precisar que no basta con la enseñanza expositiva para que el estudiante se forme un conocimiento científico, pues la actitud científica hay que formarla, educarla en los estudiantes. Se caracterizan los niveles del conocimiento científico de las matemáticas, el empírico y el teórico y se precisa que ambos niveles se distinguen por los métodos de enseñanza y aprendizaje, donde el empírico emplea métodos que permiten describir los hechos, y es por eso que para este nivel se recomienda la visualización con la utilización de las calculadoras gráficas, y el nivel teórico utiliza métodos para distinguir las esencias, por ejemplo el hipotético-deductivo, el lógico histórico, la ascensión de lo abstracto a lo concreto pensado, etc. El trabajo aporta como resultado los principios para la utilización de las calculadoras gráficas en las clases de matemáticas en aras de formar un conocimiento científico en la enseñanza de esta materia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El presente trabajo se ubica en la línea de educación estocástica en lo concerniente al conocimiento profesional del profesor; se pretende, explorar los conocimientos del profesor para la enseñanza de la probabilidad en la educación media colombiana. Para ello, se utiliza un análisis del discurso sobre las ideas expuestas por diversos autores en la literatura y el enfoque cualitativo de investigación mediante un estudio de casos. Se espera ampliar el panorama referente a los conocimientos necesarios para orientar el tema de probabilidad dentro del currículo de matemáticas en la educación de nivel pre universitario.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Esta propuesta metodológica, nace como producto de la tesis de maestría de uno de los ponentes, en ella se intenta mostrar una forma de enseñar las secciones cónicas en un ambiente didáctico que se basa en que el estudiante aprenda haciendo. Por ello, se presentan actividades para que el estudiante explore y descubra características de las figuras que él construirá y, en diálogo con sus compañeros y el docente, construya su propio conocimiento. Para lograr este proceso se empleó como referente teórico el modelo de Van-Hiele el cual se caracteriza al tener dos secciones, una de las cuales es descriptiva, en ella se observan niveles de razonamiento. La otra parte nos da a los maestros las pautas para que nuestros estudiantes avancen de un nivel a otro, estas pautas se conocen como fases de aprendizaje.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Se pone de manifiesto la necesidad de que el profesor gestione la construcción de significado en el aula y lo haga a partir de las interpretaciones que pueda inferir de los aportes verbales de los estudiantes durante el proceso. Se muestra que la construcción de significado de una definición que un profesor podría despachar muy rápidamente (señalando un error, repitiendo la definición y pidiendo a los estudiantes que se fijen bien en ella para reformular la representación de la situación en la que el objeto definido se pone en juego), está lejos de ser un asunto baladí. En el segundo ejemplo que se presenta es posible ver cómo la gestión del profesor en pro de la construcción de significado de un objeto geométrico (en este caso, el enunciado del Teorema Localización de Puntos), no se agota en el momento en que se enuncia y demuestra el Teorema sino que se requiere también en momentos en que se usa en el marco de la resolución de un nuevo problema.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En años recientes, un cuerpo creciente de investigaciones en didáctica de las matemáticas han identificado algunas dificultades en relación con la enseñanza y aprendizaje de contenidos temáticos, procesos y contextos relacionados con el pensamiento espacial y sistemas geométricos, siendo comúnmente atribuidas a causas de orden epistemológico, cognitivo, curricular y didáctico. En este marco se genera la necesidad de integrar recursos, específicamente materiales manipulativos, al currículo y a las prácticas escolares, que permitan fortalecer en los estudiantes los conocimientos obtenidos para resolver algunos problemas de su entorno escolar y cotidiano.