919 resultados para Computer Game Testing
Resumo:
These lecture notes describe the use and implementation of a framework in which mathematical as well as engineering optimisation problems can be analysed. The foundations of the framework and algorithms described -Hierarchical Asynchronous Parallel Evolutionary Algorithms (HAPEAs) - lie upon traditional evolution strategies and incorporate the concepts of a multi-objective optimisation, hierarchical topology, asynchronous evaluation of candidate solutions , parallel computing and game strategies. In a step by step approach, the numerical implementation of EAs and HAPEAs for solving multi criteria optimisation problems is conducted providing the reader with the knowledge to reproduce these hand on training in his – her- academic or industrial environment.
Resumo:
These lecture notes highlight some of the recent applications of multi-objective and multidisciplinary design optimisation in aeronautical design using the framework and methodology described in References 8, 23, 24 and in Part 1 and 2 of the notes. A summary of the methodology is described and the treatment of uncertainties in flight conditions parameters by the HAPEAs software and game strategies is introduced. Several test cases dealing with detailed design and computed with the software are presented and results discussed in section 4 of these notes.
Resumo:
The work presented in this report is aimed to implement a cost-effective offline mission path planner for aerial inspection tasks of large linear infrastructures. Like most real-world optimisation problems, mission path planning involves a number of objectives which ideally should be minimised simultaneously. Understandably, the objectives of a practical optimisation problem are conflicting each other and the minimisation of one of them necessarily implies the impossibility to minimise the other ones. This leads to the need to find a set of optimal solutions for the problem; once such a set of available options is produced, the mission planning problem is reduced to a decision making problem for the mission specialists, who will choose the solution which best fit the requirements of the mission. The goal of this work is then to develop a Multi-Objective optimisation tool able to provide the mission specialists a set of optimal solutions for the inspection task amongst which the final trajectory will be chosen, given the environment data, the mission requirements and the definition of the objectives to minimise. All the possible optimal solutions of a Multi-Objective optimisation problem are said to form the Pareto-optimal front of the problem. For any of the Pareto-optimal solutions, it is impossible to improve one objective without worsening at least another one. Amongst a set of Pareto-optimal solutions, no solution is absolutely better than another and the final choice must be a trade-off of the objectives of the problem. Multi-Objective Evolutionary Algorithms (MOEAs) are recognised to be a convenient method for exploring the Pareto-optimal front of Multi-Objective optimization problems. Their efficiency is due to their parallelism architecture which allows to find several optimal solutions at each time
Resumo:
This paper describes a design framework intended to conceptually map the influence that game design has on the creative activity people engage in during gameplay. The framework builds on behavioral and verbal analysis of people playing puzzle games. The analysis was designed to better understand the extent to which gameplay activities within different games facilitate creative problem solving. We have used an expert review process to evaluate these games in terms of their game design elements and have taken a cognitive action approach to this process to investigate how particular elements produce the potential for creative activity. This paper proposes guidelines that build upon our understanding of the relationship between the creative processes that players undertake during a game and the components of the game that allow these processes to occur. These guidelines may be used in the game design process to better facilitate creative gameplay activity.
Resumo:
Fire resistance rating of light gauge steel frame (LSF) wall systems is obtained from fire tests based on the standard fire time-temperature curve. However, fire severity has increased in modern buildings due to higher fuel loads as a result of modern furniture and light weight constructions that make use of thermoplastics materials, synthetic foams and fabrics. Some of these materials are high in calorific values and increase both the spread of fire growth and heat release rate, thus increasing the fire severity beyond that of the standard fire curve. Further, the standard fire curve does not include a decay phase that is present in natural fires. Despite the increasing usage of LSF walls, their behaviour in real building fires is not fully understood. This paper presents the details of a research study aimed at developing realistic design fire curves for use in the fire tests of LSF walls. It includes a review of the characteristics of building fires, previously developed fire time-temperature curves, computer models and available parametric equations. The paper highlights that real building fire time-temperature curves depend on the fuel load representing the combustible building contents, ventilation openings and thermal properties of wall lining materials, and provides suitable values of many required parameters including fuel loads in residential buildings. Finally, realistic design fire time-temperature curves simulating the fire conditions in modern residential buildings are proposed for the testing of LSF walls.
Resumo:
This project develops the required guidelines to assure stable and accurate operation of Power-Hardware-in-the-Loop implementations. The proposals of this research have been theoretically analyzed and practically examined using a Real-Time Digital Simulator. In this research, the interaction between software simulated power network and the physical power system has been studied. The conditions for different operating regimes have been derived and the corresponding analyses have been presented.
Resumo:
Video games provide unique interactive player experiences (PX) often categorised into different genres. Prior research has looked at different game genres, but rarely through a PX lens. Especially, PX in the emerging area of massive online battle arena (MOBA) games is not well understood by researchers in the field. We address this knowledge gap by presenting a PX study of different game genres, which we followed up with a second semi-structured interview study about PX in MOBA games. Among the results of our analyses are that games that are likely played with other players, such as MOBA games, stimulate less immersion and presence for players. Additionally, while challenge and frustration are significantly higher in this genre, players get a sense of satisfaction from teamwork, competition and mastery of complex gameplay interactions. Our study is the first to contribute a comprehensive insight into key motivators of MOBA players and how PX in this genre is different from other genres.
Resumo:
This thesis is an analyzing creative processes that can be fostered through computer gaming. Outcomes from the research build on our knowledge of how computer games foster creative thinking. The research proposes guidelines that build upon our understanding of the relationship between the creative processes that players undertake during a game and the components of the game that allow these processes to occur. These guidelines may be used in the game design process to better facilitate creative gameplay activity. A significant research contribution is the ability to create games that facilitate creative thinking through engaging interactions with technology.
Resumo:
In this chapter, we explore methods for automatically generating game content—and games themselves—adapted to individual players in order to improve their playing experience or achieve a desired effect. This goes beyond notions of mere replayability and involves modeling player needs to maximize their enjoyment, involvement, and interest in the game being played. We identify three main aspects of this process: generation of new content and rule sets, measurement of this content and the player, and adaptation of the game to change player experience. This process forms a feedback loop of constant refinement, as games are continually improved while being played. Framed within this methodology, we present an overview of our recent and ongoing research in this area. This is illustrated by a number of case studies that demonstrate these ideas in action over a variety of game types, including 3D action games, arcade games, platformers, board games, puzzles, and open-world games. We draw together some of the lessons learned from these projects to comment on the difficulties, the benefits, and the potential for personalized gaming via adaptive game design.
Resumo:
The "Humies" awards are an annual competition held in conjunction with the Genetic and Evolutionary Computation Conference (GECCO), in which cash prizes totalling $10,000 are awarded to the most human-competitive results produced by any form of evolutionary computation published in the previous year. This article describes the gold medal-winning entry from the 2012 "Humies" competition, based on the LUDI system for playing, evaluating and creating new board games. LUDI was able to demonstrate human-competitive results in evolving novel board games that have gone on to be commercially published, one of which, Yavalath, has been ranked in the top 2.5% of abstract board games ever invented. Further evidence of human-competitiveness was demonstrated in the evolved games implicitly capturing several principles of good game design, outperforming human designers in at least one case, and going on to inspire a new sub-genre of games.
Resumo:
This paper explores a gap within the serious game design research. That gap is the ambiguity surrounding the process of aligning the instructional objectives of serious games with their core-gameplay i.e. the moment-to-moment activity that is the core of player interaction. A core-gameplay focused design framework is proposed that can work alongside existing, more broadly focused serious games design frameworks. The framework utilises an inquiry-based approach that allows the serious game designer to use key questions as a means to clearly outline instructional objectives with the core-gameplay. The use of this design framework is considered in the context of a small section of gameplay from an educational game currently in development. This demonstration of the framework brings shows how instructional objectives can be embedded into a serious games core-gameplay.