981 resultados para Computational algorithm
Resumo:
An improvement to the quality bidimensional Delaunay mesh generation algorithm, which combines the mesh refinement algorithms strategy of Ruppert and Shewchuk is proposed in this research. The developed technique uses diametral lenses criterion, introduced by L. P. Chew, with the purpose of eliminating the extremely obtuse triangles in the boundary mesh. This method splits the boundary segment and obtains an initial prerefinement, and thus reducing the number of necessary iterations to generate a high quality sequential triangulation. Moreover, it decreases the intensity of the communication and synchronization between subdomains in parallel mesh refinement. © 2008 IEEE.
Resumo:
In the last few years, crop rotation has gained attention due to its economic, environmental and social importance which explains why it can be highly beneficial for farmers. This paper presents a mathematical model for the Crop Rotation Problem (CRP) that was adapted from literature for this highly complex combinatorial problem. The CRP is devised to find a vegetable planting program that takes into account green fertilization restrictions, the set-aside period, planting restrictions for neighboring lots and for crop sequencing, demand constraints, while, at the same time, maximizing the profitability of the planted area. The main aim of this study is to develop a genetic algorithm and test it in a real context. The genetic algorithm involves a constructive heuristic to build the initial population and the operators of crossover, mutation, migration and elitism. The computational experiment was performed for a medium dimension real planting area with 16 lots, considering 29 crops of 10 different botanical families and a two-year planting rotation. Results showed that the algorithm determined feasible solutions in a reasonable computational time, thus proving its efficacy for dealing with this practical application.
Resumo:
The present paper solves the multi-level capacitated lot sizing problem with backlogging (MLCLSPB) combining a genetic algorithm with the solution of mixed-integer programming models and the improvement heuristic fix and optimize. This approach is evaluated over sets of benchmark instances and compared to methods from literature. Computational results indicate competitive results applying the proposed method when compared with other literature approaches. © 2013 IEEE.
Resumo:
Feature selection aims to find the most important information to save computational efforts and data storage. We formulated this task as a combinatorial optimization problem since the exponential growth of possible solutions makes an exhaustive search infeasible. In this work, we propose a new nature-inspired feature selection technique based on bats behavior, namely, binary bat algorithm The wrapper approach combines the power of exploration of the bats together with the speed of the optimum-path forest classifier to find a better data representation. Experiments in public datasets have shown that the proposed technique can indeed improve the effectiveness of the optimum-path forest and outperform some well-known swarm-based techniques. © 2013 Copyright © 2013 Elsevier Inc. All rights reserved.
Resumo:
This paper applies a genetic algorithm with hierarchically structured population to solve unconstrained optimization problems. The population has individuals distributed in several overlapping clusters, each one with a leader and a variable number of support individuals. The hierarchy establishes that leaders must be fitter than its supporters with the topological organization of the clusters following a tree. Computational tests evaluate different population structures, population sizes and crossover operators for better algorithm performance. A set of known benchmark test problems is solved and the results found are compared with those obtained from other methods described in the literature, namely, two genetic algorithms, a simulated annealing, a differential evolution and a particle swarm optimization. The results indicate that the method employed is capable of achieving better performance than the previous approaches in regard as the two criteria usually employed for comparisons: the number of function evaluations and rate of success. The method also has a superior performance if the number of problems solved is taken into account. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The increasing amount of sequences stored in genomic databases has become unfeasible to the sequential analysis. Then, the parallel computing brought its power to the Bioinformatics through parallel algorithms to align and analyze the sequences, providing improvements mainly in the running time of these algorithms. In many situations, the parallel strategy contributes to reducing the computational complexity of the big problems. This work shows some results obtained by an implementation of a parallel score estimating technique for the score matrix calculation stage, which is the first stage of a progressive multiple sequence alignment. The performance and quality of the parallel score estimating are compared with the results of a dynamic programming approach also implemented in parallel. This comparison shows a significant reduction of running time. Moreover, the quality of the final alignment, using the new strategy, is analyzed and compared with the quality of the approach with dynamic programming.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The irregular shape packing problem is approached. The container has a fixed width and an open dimension to be minimized. The proposed algorithm constructively creates the solution using an ordered list of items and a placement heuristic. Simulated annealing is the adopted metaheuristic to solve the optimization problem. A two-level algorithm is used to minimize the open dimension of the container. To ensure feasible layouts, the concept of collision free region is used. A collision free region represents all possible translations for an item to be placed and may be degenerated. For a moving item, the proposed placement heuristic detects the presence of exact fits (when the item is fully constrained by its surroundings) and exact slides (when the item position is constrained in all but one direction). The relevance of these positions is analyzed and a new placement heuristic is proposed. Computational comparisons on benchmark problems show that the proposed algorithm generated highly competitive solutions. Moreover, our algorithm updated some best known results. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents a new parallel methodology for calculating the determinant of matrices of the order n, with computational complexity O(n), using the Gauss-Jordan Elimination Method and Chio's Rule as references. We intend to present our step-by-step methodology using clear mathematical language, where we will demonstrate how to calculate the determinant of a matrix of the order n in an analytical format. We will also present a computational model with one sequential algorithm and one parallel algorithm using a pseudo-code.
Resumo:
The aim of my thesis is to parallelize the Weighting Histogram Analysis Method (WHAM), which is a popular algorithm used to calculate the Free Energy of a molucular system in Molecular Dynamics simulations. WHAM works in post processing in cooperation with another algorithm called Umbrella Sampling. Umbrella Sampling has the purpose to add a biasing in the potential energy of the system in order to force the system to sample a specific region in the configurational space. Several N independent simulations are performed in order to sample all the region of interest. Subsequently, the WHAM algorithm is used to estimate the original system energy starting from the N atomic trajectories. The parallelization of WHAM has been performed through CUDA, a language that allows to work in GPUs of NVIDIA graphic cards, which have a parallel achitecture. The parallel implementation may sensibly speed up the WHAM execution compared to previous serial CPU imlementations. However, the WHAM CPU code presents some temporal criticalities to very high numbers of interactions. The algorithm has been written in C++ and executed in UNIX systems provided with NVIDIA graphic cards. The results were satisfying obtaining an increase of performances when the model was executed on graphics cards with compute capability greater. Nonetheless, the GPUs used to test the algorithm is quite old and not designated for scientific calculations. It is likely that a further performance increase will be obtained if the algorithm would be executed in clusters of GPU at high level of computational efficiency. The thesis is organized in the following way: I will first describe the mathematical formulation of Umbrella Sampling and WHAM algorithm with their apllications in the study of ionic channels and in Molecular Docking (Chapter 1); then, I will present the CUDA architectures used to implement the model (Chapter 2); and finally, the results obtained on model systems will be presented (Chapter 3).
Resumo:
We derive a new class of iterative schemes for accelerating the convergence of the EM algorithm, by exploiting the connection between fixed point iterations and extrapolation methods. First, we present a general formulation of one-step iterative schemes, which are obtained by cycling with the extrapolation methods. We, then square the one-step schemes to obtain the new class of methods, which we call SQUAREM. Squaring a one-step iterative scheme is simply applying it twice within each cycle of the extrapolation method. Here we focus on the first order or rank-one extrapolation methods for two reasons, (1) simplicity, and (2) computational efficiency. In particular, we study two first order extrapolation methods, the reduced rank extrapolation (RRE1) and minimal polynomial extrapolation (MPE1). The convergence of the new schemes, both one-step and squared, is non-monotonic with respect to the residual norm. The first order one-step and SQUAREM schemes are linearly convergent, like the EM algorithm but they have a faster rate of convergence. We demonstrate, through five different examples, the effectiveness of the first order SQUAREM schemes, SqRRE1 and SqMPE1, in accelerating the EM algorithm. The SQUAREM schemes are also shown to be vastly superior to their one-step counterparts, RRE1 and MPE1, in terms of computational efficiency. The proposed extrapolation schemes can fail due to the numerical problems of stagnation and near breakdown. We have developed a new hybrid iterative scheme that combines the RRE1 and MPE1 schemes in such a manner that it overcomes both stagnation and near breakdown. The squared first order hybrid scheme, SqHyb1, emerges as the iterative scheme of choice based on our numerical experiments. It combines the fast convergence of the SqMPE1, while avoiding near breakdowns, with the stability of SqRRE1, while avoiding stagnations. The SQUAREM methods can be incorporated very easily into an existing EM algorithm. They only require the basic EM step for their implementation and do not require any other auxiliary quantities such as the complete data log likelihood, and its gradient or hessian. They are an attractive option in problems with a very large number of parameters, and in problems where the statistical model is complex, the EM algorithm is slow and each EM step is computationally demanding.