910 resultados para Clustering algorithm


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Boreal winter wind storm situations over Central Europe are investigated by means of an objective cluster analysis. Surface data from the NCEP-Reanalysis and ECHAM4/OPYC3-climate change GHG simulation (IS92a) are considered. To achieve an optimum separation of clusters of extreme storm conditions, 55 clusters of weather patterns are differentiated. To reduce the computational effort, a PCA is initially performed, leading to a data reduction of about 98 %. The clustering itself was computed on 3-day periods constructed with the first six PCs using "k-means" clustering algorithm. The applied method enables an evaluation of the time evolution of the synoptic developments. The climate change signal is constructed by a projection of the GCM simulation on the EOFs attained from the NCEP-Reanalysis. Consequently, the same clusters are obtained and frequency distributions can be compared. For Central Europe, four primary storm clusters are identified. These clusters feature almost 72 % of the historical extreme storms events and add only to 5 % of the total relative frequency. Moreover, they show a statistically significant signature in the associated wind fields over Europe. An increased frequency of Central European storm clusters is detected with enhanced GHG conditions, associated with an enhancement of the pressure gradient over Central Europe. Consequently, more intense wind events over Central Europe are expected. The presented algorithm will be highly valuable for the analysis of huge data amounts as is required for e.g. multi-model ensemble analysis, particularly because of the enormous data reduction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Exascale systems are the next frontier in high-performance computing and are expected to deliver a performance of the order of 10^18 operations per second using massive multicore processors. Very large- and extreme-scale parallel systems pose critical algorithmic challenges, especially related to concurrency, locality and the need to avoid global communication patterns. This work investigates a novel protocol for dynamic group communication that can be used to remove the global communication requirement and to reduce the communication cost in parallel formulations of iterative data mining algorithms. The protocol is used to provide a communication-efficient parallel formulation of the k-means algorithm for cluster analysis. The approach is based on a collective communication operation for dynamic groups of processes and exploits non-uniform data distributions. Non-uniform data distributions can be either found in real-world distributed applications or induced by means of multidimensional binary search trees. The analysis of the proposed dynamic group communication protocol has shown that it does not introduce significant communication overhead. The parallel clustering algorithm has also been extended to accommodate an approximation error, which allows a further reduction of the communication costs. The effectiveness of the exact and approximate methods has been tested in a parallel computing system with 64 processors and in simulations with 1024 processing elements.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: The validity of ensemble averaging on event-related potential (ERP) data has been questioned, due to its assumption that the ERP is identical across trials. Thus, there is a need for preliminary testing for cluster structure in the data. New method: We propose a complete pipeline for the cluster analysis of ERP data. To increase the signalto-noise (SNR) ratio of the raw single-trials, we used a denoising method based on Empirical Mode Decomposition (EMD). Next, we used a bootstrap-based method to determine the number of clusters, through a measure called the Stability Index (SI). We then used a clustering algorithm based on a Genetic Algorithm (GA)to define initial cluster centroids for subsequent k-means clustering. Finally, we visualised the clustering results through a scheme based on Principal Component Analysis (PCA). Results: After validating the pipeline on simulated data, we tested it on data from two experiments – a P300 speller paradigm on a single subject and a language processing study on 25 subjects. Results revealed evidence for the existence of 6 clusters in one experimental condition from the language processing study. Further, a two-way chi-square test revealed an influence of subject on cluster membership.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we present a novel approach to detect people meeting. The proposed approach works by translating people behaviour from trajectory information into semantic terms. Having available a semantic model of the meeting behaviour, the event detection is performed in the semantic domain. The model is learnt employing a soft-computing clustering algorithm that combines trajectory information and motion semantic terms. A stable representation can be obtained from a series of examples. Results obtained on a series of videos with different types of meeting situations show that the proposed approach can learn a generic model that can effectively be applied on the behaviour recognition of meeting situations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Image segmentation is one of the image processing problems that deserves special attention from the scientific community. This work studies unsupervised methods to clustering and pattern recognition applicable to medical image segmentation. Natural Computing based methods have shown very attractive in such tasks and are studied here as a way to verify it's applicability in medical image segmentation. This work treats to implement the following methods: GKA (Genetic K-means Algorithm), GFCMA (Genetic FCM Algorithm), PSOKA (PSO and K-means based Clustering Algorithm) and PSOFCM (PSO and FCM based Clustering Algorithm). Besides, as a way to evaluate the results given by the algorithms, clustering validity indexes are used as quantitative measure. Visual and qualitative evaluations are realized also, mainly using data given by the BrainWeb brain simulator as ground truth

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Data clustering is applied to various fields such as data mining, image processing and pattern recognition technique. Clustering algorithms splits a data set into clusters such that elements within the same cluster have a high degree of similarity, while elements belonging to different clusters have a high degree of dissimilarity. The Fuzzy C-Means Algorithm (FCM) is a fuzzy clustering algorithm most used and discussed in the literature. The performance of the FCM is strongly affected by the selection of the initial centers of the clusters. Therefore, the choice of a good set of initial cluster centers is very important for the performance of the algorithm. However, in FCM, the choice of initial centers is made randomly, making it difficult to find a good set. This paper proposes three new methods to obtain initial cluster centers, deterministically, the FCM algorithm, and can also be used in variants of the FCM. In this work these initialization methods were applied in variant ckMeans.With the proposed methods, we intend to obtain a set of initial centers which are close to the real cluster centers. With these new approaches startup if you want to reduce the number of iterations to converge these algorithms and processing time without affecting the quality of the cluster or even improve the quality in some cases. Accordingly, cluster validation indices were used to measure the quality of the clusters obtained by the modified FCM and ckMeans algorithms with the proposed initialization methods when applied to various data sets

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The genetic divergence in 20 Eucalyptus spp. clones was evaluated by multivariate techniques based on 167 RAPD markers, of which 155 were polymorphic and 12 monomorphic. The measures of genetic distances were obtained by the arithmetic complement of the coefficients of Jaccard and of Sorenso-Nei and Li and evaluated by the hierarchical methods of Single Linkage clustering and Unweighted Pair Group Method with Arithmetic Mean (UPGMA). Independent of the dissimilarity coefficient, the greatest divergence was found between clones 7 and 17 and the smallest between the clones 11 and 14. Clone clustering was little influenced by the applied procedure so that, adopting the same percentage of divergence, the UPGMA identified two groups less for the coefficient of Sorenso-Nei and Li. The clones evidenced considerable genetic divergence, which is partly associated to the origin of the study material. The clusters formed by the UPGMA clustering algorithm associated to the arithmetic complement of Jaccard were most consistent.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Measurements of inclusive jet and dijet production cross sections are presented. Data from LHC proton-proton collisions at √s=7 TeV, corresponding to 5.0 fb-1 of integrated luminosity, have been collected with the CMS detector. Jets are reconstructed up to rapidity 2.5, transverse momentum 2 TeV, and dijet invariant mass 5 TeV, using the anti-k T clustering algorithm with distance parameter R=0.7. The measured cross sections are corrected for detector effects and compared to perturbative QCD predictions at next-to-leading order, using five sets of parton distribution functions. © 2013 CERN.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O avanço nas áreas de comunicação sem fio e microeletrônica permite o desenvolvimento de equipamentos micro sensores com capacidade de monitorar grandes regiões. Formadas por milhares de nós sensores, trabalhando de forma colaborativa, as Redes de Sensores sem Fio apresentam severas restrições de energia, devido à capacidade limitada das baterias dos nós que compõem a rede. O consumo de energia pode ser minimizado, permitindo que apenas alguns nós especiais, chamados de Cluster Head, sejam responsáveis por receber os dados dos nós que formam seu cluster e propagar estes dados para um ponto de coleta denominado Estação Base. A escolha do Cluster Head ideal influencia no aumento do período de estabilidade da rede, maximizando seu tempo de vida útil. A proposta, apresentada nesta dissertação, utiliza Lógica Fuzzy e algoritmo k-means com base em informações centralizadas na Estação Base para eleição do Cluster Head ideal em Redes de Sensores sem Fio heterogêneas. Os critérios usados para seleção do Cluster Head são baseados na centralidade do nó, nível de energia e proximidade para a Estação Base. Esta dissertação apresenta as desvantagens de utilização de informações locais para eleição do líder do cluster e a importância do tratamento discriminatório sobre as discrepâncias energéticas dos nós que formam a rede. Esta proposta é comparada com os algoritmos Low Energy Adaptative Clustering Hierarchy (LEACH) e Distributed energy-efficient clustering algorithm for heterogeneous Wireless sensor networks (DEEC). Esta comparação é feita, utilizando o final do período de estabilidade, como também, o tempo de vida útil da rede.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEIS

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ubiquity of time series data across almost all human endeavors has produced a great interest in time series data mining in the last decade. While dozens of classification algorithms have been applied to time series, recent empirical evidence strongly suggests that simple nearest neighbor classification is exceptionally difficult to beat. The choice of distance measure used by the nearest neighbor algorithm is important, and depends on the invariances required by the domain. For example, motion capture data typically requires invariance to warping, and cardiology data requires invariance to the baseline (the mean value). Similarly, recent work suggests that for time series clustering, the choice of clustering algorithm is much less important than the choice of distance measure used.In this work we make a somewhat surprising claim. There is an invariance that the community seems to have missed, complexity invariance. Intuitively, the problem is that in many domains the different classes may have different complexities, and pairs of complex objects, even those which subjectively may seem very similar to the human eye, tend to be further apart under current distance measures than pairs of simple objects. This fact introduces errors in nearest neighbor classification, where some complex objects may be incorrectly assigned to a simpler class. Similarly, for clustering this effect can introduce errors by “suggesting” to the clustering algorithm that subjectively similar, but complex objects belong in a sparser and larger diameter cluster than is truly warranted.We introduce the first complexity-invariant distance measure for time series, and show that it generally produces significant improvements in classification and clustering accuracy. We further show that this improvement does not compromise efficiency, since we can lower bound the measure and use a modification of triangular inequality, thus making use of most existing indexing and data mining algorithms. We evaluate our ideas with the largest and most comprehensive set of time series mining experiments ever attempted in a single work, and show that complexity-invariant distance measures can produce improvements in classification and clustering in the vast majority of cases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The main aim of this Ph.D. dissertation is the study of clustering dependent data by means of copula functions with particular emphasis on microarray data. Copula functions are a popular multivariate modeling tool in each field where the multivariate dependence is of great interest and their use in clustering has not been still investigated. The first part of this work contains the review of the literature of clustering methods, copula functions and microarray experiments. The attention focuses on the K–means (Hartigan, 1975; Hartigan and Wong, 1979), the hierarchical (Everitt, 1974) and the model–based (Fraley and Raftery, 1998, 1999, 2000, 2007) clustering techniques because their performance is compared. Then, the probabilistic interpretation of the Sklar’s theorem (Sklar’s, 1959), the estimation methods for copulas like the Inference for Margins (Joe and Xu, 1996) and the Archimedean and Elliptical copula families are presented. In the end, applications of clustering methods and copulas to the genetic and microarray experiments are highlighted. The second part contains the original contribution proposed. A simulation study is performed in order to evaluate the performance of the K–means and the hierarchical bottom–up clustering methods in identifying clusters according to the dependence structure of the data generating process. Different simulations are performed by varying different conditions (e.g., the kind of margins (distinct, overlapping and nested) and the value of the dependence parameter ) and the results are evaluated by means of different measures of performance. In light of the simulation results and of the limits of the two investigated clustering methods, a new clustering algorithm based on copula functions (‘CoClust’ in brief) is proposed. The basic idea, the iterative procedure of the CoClust and the description of the written R functions with their output are given. The CoClust algorithm is tested on simulated data (by varying the number of clusters, the copula models, the dependence parameter value and the degree of overlap of margins) and is compared with the performance of model–based clustering by using different measures of performance, like the percentage of well–identified number of clusters and the not rejection percentage of H0 on . It is shown that the CoClust algorithm allows to overcome all observed limits of the other investigated clustering techniques and is able to identify clusters according to the dependence structure of the data independently of the degree of overlap of margins and the strength of the dependence. The CoClust uses a criterion based on the maximized log–likelihood function of the copula and can virtually account for any possible dependence relationship between observations. Many peculiar characteristics are shown for the CoClust, e.g. its capability of identifying the true number of clusters and the fact that it does not require a starting classification. Finally, the CoClust algorithm is applied to the real microarray data of Hedenfalk et al. (2001) both to the gene expressions observed in three different cancer samples and to the columns (tumor samples) of the whole data matrix.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Intelligent Transport Systems (ITS) consists in the application of ICT to transport to offer new and improved services to the mobility of people and freights. While using ITS, travellers produce large quantities of data that can be collected and analysed to study their behaviour and to provide information to decision makers and planners. The thesis proposes innovative deployments of classification algorithms for Intelligent Transport System with the aim to support the decisions on traffic rerouting, bus transport demand and behaviour of two wheelers vehicles. The first part of this work provides an overview and a classification of a selection of clustering algorithms that can be implemented for the analysis of ITS data. The first contribution of this thesis is an innovative use of the agglomerative hierarchical clustering algorithm to classify similar travels in terms of their origin and destination, together with the proposal for a methodology to analyse drivers’ route choice behaviour using GPS coordinates and optimal alternatives. The clusters of repetitive travels made by a sample of drivers are then analysed to compare observed route choices to the modelled alternatives. The results of the analysis show that drivers select routes that are more reliable but that are more expensive in terms of travel time. Successively, different types of users of a service that provides information on the real time arrivals of bus at stop are classified using Support Vector Machines. The results shows that the results of the classification of different types of bus transport users can be used to update or complement the census on bus transport flows. Finally, the problem of the classification of accidents made by two wheelers vehicles is presented together with possible future application of clustering methodologies aimed at identifying and classifying the different types of accidents.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The purpose of this study was to determine the role of saliva-derived biomarkers and periodontal pathogens during periodontal disease progression (PDP). One hundred human participants were recruited into a 12-month investigation. They were seen bi-monthly for saliva and clinical measures and bi-annually for subtraction radiography, serum and plaque biofilm assessments. Saliva and serum were analyzed with protein arrays for 14 pro-inflammatory and bone turnover markers, while qPCR was used for detection of biofilm. A hierarchical clustering algorithm was used to group study participants based on clinical, microbiological, salivary/serum biomarkers, and PDP. Eighty-three individuals completed the six-month monitoring phase, with 39 [corrected] exhibiting PDP, while 44 [corrected] demonstrated stability. Participants assembled into three clusters based on periodontal pathogens, serum and salivary biomarkers. Cluster 1 members displayed high salivary biomarkers and biofilm; 71% [corrected] of these individuals were undergoing PDP. Cluster 2 members displayed low biofilm and biomarker levels; 76% [corrected] of these individuals were stable. Cluster 3 members were not discriminated by PDP status; however, cluster stratification followed groups 1 and 2 based on thresholds of salivary biomarkers and biofilm pathogens. The association of cluster membership to PDP was highly significant (p < 0.0007). [corrected] The use of salivary and biofilm biomarkers offers potential for the identification of PDP or stability (ClinicalTrials.gov number, CT00277745).