907 resultados para Clinical analysis. Near-infrared spectroscopy. Multivariate calibration


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ultraviolet-visible spectroscopy readily discerns the two types of melanin pigments (eumelanin and pheomelanin), although fundamental details regarding the optical properties and pigment heterogeneity are more difficult to disentangle via analysis of the broad featureless absorption spectrum alone. We employed nonlinear transient absorption spectroscopy to study different melanin pigments at near-infrared wavelengths. Excited-state absorption, ground-state depletion, and stimulated emission signal contributions were distinguished for natural and synthetic eumelanins and pheomelanins. A starker contrast among the pigments is observed in the nonlinear excitation regime because they all exhibit distinct transient absorptive amplitudes, phase shifts, and nonexponential population dynamics spanning the femtosecond-nanosecond range. In this manner, different pigments within the pheomelanin subclass were distinguished in synthetic and human hair samples. These results highlight the potential of nonlinear spectroscopies to deliver an in situ analysis of natural melanins in tissue that are otherwise difficult to extract and purify.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Time-resolved resonance Raman spectroscopy of the lowest energy excited state of the 4,4'-bipyridyl ligand-bridged complex, [(CO)(5)W(L)W(CO5] (1), and Raman spectroscopy of electrochemically reduced 1, both give bands characteristic of the the L(.-) species. This confirms that the ligand L is negatively charged in the lowest energy exicited state which is therefore metal-ligand charge transfer (MLCT) in character. Raman spectra of the radical anion of 1 excited in the far red (800 nm) exhibited a band near 2050 cm(-1) due to a vco symmetric CO stretching mode, compared to the corresponding band at 2070 cm(-1) in the spectrum of the parent, uncharged complex. The lower vco in the reduced complex supports the recent finding by time-resolved IR spectroscopy of a similar frequency decrease for nu(CO) in the longest lived (MLCT) excited state of 1 which was attributed to electron/hole localisation in this state on the IR time scale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Higher heating value (HHV) is probably the most important property of the fuels. Bomb calorimeter and derived empirical formulae are often used for accurate determination of HHV of fuels. A useful empirical equation was derived to estimate HHV of petro-diesels from their C and H contents: HHV (in MJ/kg) = 0.3482(C) + 1.1887(H), r (2) = 0.9956. The derived correlation was validated against the most common formulae in the literature, Boie and Channiwala-Parikh correlations. Accordingly, accurate determination of C and H contents is essential for estimation of HHV and avoids using a bomb calorimeter. However, accurate estimation of C and H contents requires using expensive and laborious gas chromatographic techniques. In this work, chemometry offered a simple method for HHV determination of petro-diesels without using bomb calorimeter or even gas chromatography. PLS-1 calibration was used instead of gas chromatography to find C and H contents from the non-selective mid-infrared (MIR) spectra of petro-diesels, HHV was then estimated from the earlier empirical equation. The proposed method predicts HHV of petro-diesels with high accuracy and precision, with modest analysis costs. The present method may be extended to other fuels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermal degradation and gaseous products evolving from the pyrolysis of sewage sludge, aimed at agricultural soil amendment, were investigated using Thermogravimetric Analysis in conjunction with Fourier Transform Infrared Analysis (TG-FTIR). The materials were studied in temperatures ranging from 30 to 800 ºC. Furthermore infrared spectra of sewage sludge samples were performed as a complementary technique. In parallel the sewage sludge was spiked with ibuprofen in order to test whether the mentioned techniques are able to detect the drug. Thermal analysis showed the range of 200-400ºC as the most characteristic for weight loss, corresponding with the organic matter volatilization, while the range of 500-800ºC was also characteristic and due to the volatilization of carbonates. On the other hand, ibuprofen-spiking tests identified at temperature range (150-250ºC) where the compound totally volatilizes, therefore, in this work, the detection of ibuprofen by TGA was established for concentrations higher than 0.5 g/kg sludge, concentration 102 times higher than the concentrations measured by other authors in regular sewage sludge (Martín, et al., 2010). A correlation has been found between the ibuprofen concentrations in the sludge and the intensity of the absorption bands, both for FT-IR spectra at the maximum emission temperature for ibuprofen (232ºC) as for the FT-IR spectra of the non-pyrolyzed samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Techniques for obtaining quantitative values of the temperatures and concentrations of remote hot gaseous effluents from their measured passive emission spectra have been examined in laboratory experiments. The high sensitivity of the spectrometer in the vicinity of the 2397 cm-1 band head region of CO2 has allowed the gas temperature to be calculated from the relative intensity of the observed rotational lines. The spatial distribution of the CO2 in a methane flame has been reconstructed tomographically using a matrix inversion technique. The spectrometer has been calibrated against a black body source at different temperatures and a self absorption correction has been applied to the data avoiding the need to measure the transmission directly. Reconstruction artifacts have been reduced by applying a smoothing routine to the inversion matrix.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Samples of whole crop wheat (WCW, n = 134) and whole crop barley (WCB, n = 16) were collected from commercial farms in the UK over a 2-year period (2003/2004 and 2004/2005). Near infrared reflectance spectroscopy (NIRS) was compared with laboratory and in vitro digestibility measures to predict digestible organic matter in the dry matter (DOMD) and metabolisable energy (ME) contents measured in vivo using sheep. Spectral models using the mean spectra of two scans were compared with those using individual spectra (duplicate spectra). Overall NIRS accurately predicted the concentration of chemical components in whole crop cereals apart from crude protein. ammonia-nitrogen, water-soluble carbohydrates, fermentation acids and solubility values. In addition. the spectral models had higher prediction power for in vivo DOMD and ME than chemical components or in vitro digestion methods. Overall there Was a benefit from the use of duplicate spectra rather than mean spectra and this was especially so for predicting in vivo DOMD and ME where the sample population size was smaller. The spectral models derived deal equally well with WCW and WCB and Would he of considerable practical value allowing rapid determination of nutritive value of these forages before their use in diets of productive animals. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on the consistency of water vapour line intensities in selected spectral regions between 800–12,000 cm−1 under atmospheric conditions using sun-pointing Fourier transform infrared spectroscopy. Measurements were made across a number of days at both a low and high altitude field site, sampling a relatively moist and relatively dry atmosphere. Our data suggests that across most of the 800–12,000 cm−1 spectral region water vapour line intensities in recent spectral line databases are generally consistent with what was observed. However, we find that HITRAN-2008 water vapour line intensities are systematically lower by up to 20% in the 8000–9200 cm−1 spectral interval relative to other spectral regions. This discrepancy is essentially removed when two new linelists (UCL08, a compilation of linelists and ab-initio calculations, and one based on recent laboratory measurements by Oudot et al. (2010) [10] in the 8000–9200 cm−1 spectral region) are used. This strongly suggests that the H2O line strengths in the HITRAN-2008 database are indeed underestimated in this spectral region and in need of revision. The calculated global-mean clear-sky absorption of solar radiation is increased by about 0.3 W m−2 when using either the UCL08 or Oudot line parameters in the 8000–9200 cm−1 region, instead of HITRAN-2008. We also found that the effect of isotopic fractionation of HDO is evident in the 2500–2900 cm−1 region in the observations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to investigate the potential application of mid-infrared spectroscopy for determination of selected sensory attributes in a range of experimentally manufactured processed cheese samples. This study also evaluates mid-infrared spectroscopy against other recently proposed techniques for predicting sensory texture attributes. Processed cheeses (n = 32) of varying compositions were manufactured on a pilot scale. After 2 and 4 wk of storage at 4 degrees C, mid-infrared spectra ( 640 to 4,000 cm(-1)) were recorded and samples were scored on a scale of 0 to 100 for 9 attributes using descriptive sensory analysis. Models were developed by partial least squares regression using raw and pretreated spectra. The mouth-coating and mass-forming models were improved by using a reduced spectral range ( 930 to 1,767 cm(-1)). The remaining attributes were most successfully modeled using a combined range ( 930 to 1,767 cm(-1) and 2,839 to 4,000 cm(-1)). The root mean square errors of cross-validation for the models were 7.4(firmness; range 65.3), 4.6 ( rubbery; range 41.7), 7.1 ( creamy; range 60.9), 5.1(chewy; range 43.3), 5.2(mouth-coating; range 37.4), 5.3 (fragmentable; range 51.0), 7.4 ( melting; range 69.3), and 3.1 (mass-forming; range 23.6). These models had a good practical utility. Model accuracy ranged from approximate quantitative predictions to excellent predictions ( range error ratio = 9.6). In general, the models compared favorably with previously reported instrumental texture models and near-infrared models, although the creamy, chewy, and melting models were slightly weaker than the previously reported near-infrared models. We concluded that mid-infrared spectroscopy could be successfully used for the nondestructive and objective assessment of processed cheese sensory quality..

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reviews the current state of development of both near-infrared (NIR) and mid-infrared (MIR) spectroscopic techniques for process monitoring, quality control, and authenticity determination in cheese processing. Infrared spectroscopy has been identified as an ideal process analytical technology tool, and recent publications have demonstrated the potential of both NIR and MIR spectroscopy, coupled with chemometric techniques, for monitoring coagulation, syneresis, and ripening as well as determination of authenticity, composition, sensory, and rheological parameters. Recent research is reviewed and compared on the basis of experimental design, spectroscopic and chemometric methods employed to assess the potential of infrared spectroscopy as a technology for improving process control and quality in cheese manufacture. Emerging research areas for these technologies, such as cheese authenticity and food chain traceability, are also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spectroscopic catalogues, such as GEISA and HITRAN, do not yet include information on the water vapour continuum that pervades visible, infrared and microwave spectral regions. This is partly because, in some spectral regions, there are rather few laboratory measurements in conditions close to those in the Earth’s atmosphere; hence understanding of the characteristics of the continuum absorption is still emerging. This is particularly so in the near-infrared and visible, where there has been renewed interest and activity in recent years. In this paper we present a critical review focusing on recent laboratory measurements in two near-infrared window regions (centred on 4700 and 6300 cm−1) and include reference to the window centred on 2600 cm−1 where more measurements have been reported. The rather few available measurements, have used Fourier transform spectroscopy (FTS), cavity ring down spectroscopy, optical-feedback – cavity enhanced laser spectroscopy and, in very narrow regions, calorimetric interferometry. These systems have different advantages and disadvantages. Fourier Transform Spectroscopy can measure the continuum across both these and neighbouring windows; by contrast, the cavity laser techniques are limited to fewer wavenumbers, but have a much higher inherent sensitivity. The available results present a diverse view of the characteristics of continuum absorption, with differences in continuum strength exceeding a factor of 10 in the cores of these windows. In individual windows, the temperature dependence of the water vapour self-continuum differs significantly in the few sets of measurements that allow an analysis. The available data also indicate that the temperature dependence differs significantly between different near-infrared windows. These pioneering measurements provide an impetus for further measurements. Improvements and/or extensions in existing techniques would aid progress to a full characterisation of the continuum – as an example, we report pilot measurements of the water vapour self-continuum using a supercontinuum laser source coupled to an FTS. Such improvements, as well as additional measurements and analyses in other laboratories, would enable the inclusion of the water vapour continuum in future spectroscopic databases, and therefore allow for a more reliable forward modelling of the radiative properties of the atmosphere. It would also allow a more confident assessment of different theoretical descriptions of the underlying cause or causes of continuum absorption.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents the first integral field spectroscopy of the Homunculus nebula around eta Carinae in the near-infrared spectral region (J band). We confirmed the presence of a hole on the polar region of each lobe, as indicated by previous near-IR long-slit spectra and mid-IR images. The holes can be described as a cylinder of height (i.e. the thickness of the lobe) and diameter of 6.5 and 6.0 x 10(16) cm, respectively. We also mapped the blue-shifted component of He I lambda 10830 seen towards the NW lobe. Contrary to previous works, we suggested that this blue-shifted component is not related to the Paddle but it is indeed in the equatorial disc. We confirmed the claim of N. Smith and showed that the spatial extent of the Little Homunculus matches remarkably well the radio continuum emission at 3 cm, indicating that the Little Homunculus can be regarded as a small H II region. Therefore, we used the optically thin 1.3 mm radio flux to derive a lower limit for the number of Lyman-continuum photons of the central source in eta Car. In the context of a binary system, and assuming that the ionizing flux comes entirely from the hot companion star, the lower limit for its spectral type and luminosity class ranges from O5.5 III to O7 I. Moreover, we showed that the radio peak at 1.7 arcsec NW from the central star is in the same line-of-sight of the `Sr-filament` but they are obviously spatially separated, while the blue-shifted component of He I lambda 10830 may be related to the radio peak and can be explained by the ultraviolet radiation from the companion star.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The time dependence of the concentration of CO2 in an electrochemical thin layer cavity is studied with Fourier transform infrared spectroscopy (FTIR) in order to evaluate the extent to which the thin layer cavity is diffusionally decoupled from the surrounding bulk electrolyte. For the model system of CO on Pt(111) in 0.1 M HClO4, it is found that the concentration of CO2, formed by electro-oxidation of CO, equilibrates rapidly with the surrounding bulk electrolyte. This rapid equilibration indicates that there is diffusion out of the thin layer, even on the short time scales of typical infrared experiments (1-3 min). However, since the measured CO2 absorbance intensity as a function of time is reproducible to within 10%, a new time-dependent method for surface coverage calibration using solution-phase species is proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natural trans- and cis-polyisoprenes and mixtures of these polymers were analysed by near-infrared spectrophotometry. The relative absorptivity data versus the amount of isomers in synthetic mixtures showed a non-linear behaviour. The results are compared with literature data from polyisoprenes extracted from other vegetal species. (C) 2000 Elsevier B.V. Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The novel coordination polymer with the formula {[Nd2(2,5-tdc)3(dmf)2(H2O)2].dmf.H2O}n (2,5-tdc2-=2,5-thiophedicarboxylate anion and dmf=dimethylformamide) has been synthesized and characterized by thermal analysis (TG/DTA), vibrational spectroscopy (FTIR) and single crystal X-ray diffraction analysis (XRD). Structure analysis reveals that Nd(III) ions show dicapped trigonal prism coordination geometry. The 2,5-tdc2- ligands connect four Nd(III) centers, adopting (κ1 - κ1) - (κ1 - κ1) - μ4 coordination mode, generating an interesting 6-connected uninodal 3D network. Photophysical properties were studied using diffuse reflectance spectroscopy (DR) and excitation/emission spectra. The photoluminescence data show the near infrared emission (NIR) with the characteristic 4F3/2→4IJ (J=9/2, 11/2 and 13/2) transitions of Nd(III) ion, indicating that 2,5-tdc2- is able to act as a sensitizer for emission in NIR region. © 2013 Elsevier B.V.