448 resultados para Chien de printemps
Resumo:
Three subjects related to epitaxial GaAs-GaAlAs optoelectronic devices are discussed in this thesis. They are:
1. Embedded Epitaxy
This is a technique of selective multilayer growth of GaAs- Ga1-xAlxAs single crystal structures through stripe openings in masking layers on GaAs substrates. This technique results in prismatic layers of GaAs and Ga1-xAlxAs "embedded" in each other and leads to controllable uniform structures terminated by crystal faces. The dependence of the growth habit on the orientation of the stripe openings has been studied. Room temperature embedded double heterostructure lasers have been fabricated using this technique. Threshold current densities as low as 1.5 KA/cm2 have been achieved.
2. Barrier Controlled PNPN Laser Diode
It is found that the I-V characteristics of a PNPN device can be controlled by using potential barriers in the base regions. Based on this principle, GaAs-GaAlAs heterostructure PNPN laser diodes have been fabricated. GaAlAs potential barriers in the bases control not only the electrical but also the optical properties of the device. PNPN lasers with low threshold currents and high breakover voltage have been achieved. Numerical calculations of this barrier controlled structure are presented in the ranges where the total current is below the holding point and near the lasing threshold.
3. Injection Lasers on Semi-Insulating Substrates
GaAs-GaAlAs heterostructure lasers fabricated on semi-insulating substrates have been studied. Two different laser structures achieved are: (1) Crowding effect lasers, (2) Lateral injection lasers. Experimental results and the working principles underlying the operation of these lasers are presented. The gain induced guiding mechanism is used to explain the lasers' far field radiation patterns. It is found that Zn diffusion in Ga1-xAlxAs depends on the Al content x, and that GaAs can be used as the diffusion mask for Zn diffusion in Ga1-xAlxAs. Lasers having very low threshold currents and operating in a stable single mode have been achieved. Because these lasers are fabricated on semi-insulating substrates, it is possible to integrate them with other electronic devices on the same substrate. An integrated device, which consists of a crowding effect laser and a Gunn oscillator on a common semi-insulating GaAs substrate, has been achieved.
Resumo:
As a simplified approach for estimating theoretically the influence of local subsoils upon the ground motion during an earthquake, the problem of an idealized layered system subjected to vertically incident plane body waves was studied. Both the technique of steady-state analysis and the technique of transient analysis have been used to analyze the problem.
In the steady-state analysis, a recursion formula has been derived for obtaining the response of a layered system to sinusoidally steady-state input. Several conclusions are drawn concerning the nature of the amplification spectrum of a nonviscous layered system having its layer stiffnesses increasing with depth. Numerical examples are given to demonstrate the effect of layer parameters on the amplification spectrum of a layered system.
In the transient analysis, two modified shear beam models have been established for obtaining approximately the response of a layered system to earthquake-like excitation. The method of continuous modal analysis was adopted for approximate analysis of the models, with energy dissipation in the layers, if any, taken into account. Numerical examples are given to demonstrate the accuracy of the models and the effect of a layered system in modifying the input motion.
Conditions are established, under which the theory is applicable to predict the influence of local subsoils on the ground motion during an earthquake. To demonstrate the applicability of the models to actual cases, three examples of actually recorded earthquake events are examined. It is concluded that significant modification of the incoming seismic waves, as predicted by the theory, is likely to occur in well defined soft subsoils during an earthquake, provided that certain conditions concerning the nature of the incoming seismic waves are satisfied.
Resumo:
The reproductive biology of blue marlin (Makaira nigricans) was assessed from 1001 fish (ranging from 121 to 275 cm in eye-to-fork length; EFL) caught by Taiwanese offshore longliners in the western Pacific Ocean from September 2000 to December 2001 and from 843 gonad samples from these fish, The overall sex ratio of the catch was approximately 1:1 dur ing the sampling period, but blue marlin are sexually dimorphic; females are larger than males. Reproductive activity (assessed by histology), a gonadosomatic index, and the distribution of oocyte diameters, indicated that spawning occurred predominantly from May to September. The estimated sizes-at-maturity (EFL50) were 179.76 ±1.01 cm (mean ±standard error) for females and 130 ±1 cm EFL for males. Blue marlin are multiple spawners and oocytes develop asynchronously. The proportion of mature females with ovaries containing postovulatory follicles (0.41) and hydrated oocytes (0.34) indicated that the blue marlin spawned once every 2–3 days on average. Batch fecundity (BF) for 26 females with the most advanced oocytes (≥1000 μm), but without postovulatory follicles, ranged from 2.11 to 13.50 million eggs (6.94 ± 0.54 million eggs). The relationships between batch fecundity (BF, in millions of eggs) and EFL and round weight (RW, kg) were BF = 3.29 × 10 –12 EFL5.31 (r2 = 0.70) and BF = 1.59 × 10–3 RW 1.73 (r2= 0.67), respectively. The parameters estimated in this study are key information for stock assessments of blue marlin in the western Pacific Ocean and will contribute to the conservation and sustainable yield of
Resumo:
Cytosine DNA methylation protects eukaryotic genomes by silencing transposons and harmful DNAs, but also regulates gene expression during normal development. Loss of CG methylation in the Arabidopsis thaliana met1 and ddm1 mutants causes varied and stochastic developmental defects that are often inherited independently of the original met1 or ddm1 mutation. Loss of non-CG methylation in plants with combined mutations in the DRM and CMT3 genes also causes a suite of developmental defects. We show here that the pleiotropic developmental defects of drm1 drm2 cmt3 triple mutant plants are fully recessive, and unlike phenotypes caused by met1 and ddm1, are not inherited independently of the drm and cmt3 mutations. Developmental phenotypes are also reversed when drm1 drm2 cmt3 plants are transformed with DRM2 or CMT3, implying that non-CG DNA methylation is efficiently re-established by sequence-specific signals. We provide evidence that these signals include RNA silencing though the 24-nucleotide short interfering RNA (siRNA) pathway as well as histone H3K9 methylation, both of which converge on the putative chromatin-remodeling protein DRD1. These signals act in at least three partially intersecting pathways that control the locus-specific patterning of non-CG methylation by the DRM2 and CMT3 methyltransferases. Our results suggest that non-CG DNA methylation that is inherited via a network of persistent targeting signals has been co-opted to regulate developmentally important genes. © 2006 Chan et al.
Resumo:
Electrical double-layer capacitors owe their large capacitance to the formation of a double-layer at the electrode/electrolyte interface of high surface area carbon-based electrode materials. Greater electrical energy storage capacity has been attributed to transition metal oxides/nitrides that undergo fast, reversible redox reactions at the electrode surface (pseudo-capacitive behavior) in addition to forming electrical double-layers. Solution Precursor Plasma Spray (SPPS) has shown promise for depositing porous, high surface area transition metal oxides. This investigation explored the potential of SPPS to fabricate a-MoO 3 coatings with micro-structures suitable for use as super-capacitor electrodes. The effects of number of spray passes, spray distance, solution concentration, flow rate and spray velocity on the chemistry and micro-structure of the a-MoO 3 deposits were examined. DTA/TGA, SEM, XRD, and electrochemical analyses were performed to characterize the coatings. The results demonstrate the importance of post-deposition heating of the deposit by subsequent passes of the plasma on the coating morphology. © ASM International.
Resumo:
Password authentication has been adopted as one of the most commonly used solutions in network environment to protect resources from unauthorized access. Recently, Lee–Kim–Yoo [S.W. Lee, H.S. Kim, K.Y. Yoo, Improvement of Chien et al.'s remote user authentication scheme using smart cards, Computer Standards & Interfaces 27 (2) (2005) 181–183] and Lee-Chiu [N.Y. Lee, Y.C. Chiu, Improved remote authentication scheme with smart card, Computer Standards & Interfaces 27 (2) (2005) 177–180] respectively proposed a smart card based password authentication scheme. We show that these two schemes are both subject to forgery attacks provided that the information stored in the smart card is disclosed by the adversary. We also propose an improved scheme with formal security proof.
Resumo:
A main-chain nonracemic chiral liquid crystalline polymer was synthesized from (R)-(-)4'-{w-[2-(p-hydroxy-o-nitrophenyloxy)-1-propyloxy]-1-decyloxyl-4-biphenylcarboxylic acid. This polymer contained 10 methylene units in each chemical repeating unit and was abbreviated PET(R*-10). On the basis of differential scanning calorimetry, wide-angle X-ray diffraction, and polarized light microscopy experiments, chiral smectic C (S-C*) and chiral smectic A (S-A*) phases were identified. Both flat-elongated and helical lamellar crystal morphologies were observed in transmission electron microscopy. Of particular interest was the flat-elongated lamellar crystals were constructed via microtwinning of an orthorhombic cell with dimensions of a = 1.42 nm, b = 1.28 nm, and c = 3.04 nm. On the other hand, the helical lamellar crystals were exclusively left-handed, which was opposite to the right-handed helical crystals grown in PET(R*-9) and PET(R*-11) (having 9 and 11 methylene units, respectively). Note that these three polymers had identical right-handed chiral centers (R*-). Therefore, a single methylene unit difference on the polymer backbones on an atomic length scale substantially changed the chirality of the crystals in the micrometer length scale. Furthermore, aggregates of these helical crystals in PET(R*-10) did not generate banded spherulites in polarized light microscopy. Possible reasons for this change and loss of helical senses (handedness) on different length scales in chirality transferring processes were discussed.
Resumo:
In natural and synthetic materials having non-racemic chiral centers, chirality and structural ordering each play a distinct role in the formation of ordered states. Configurational chirality can be extended to morphological chirality when the phase, structures possess low liquid crystalline order. In the crystalline states the crystallization process suppresses the chiral helical morphology due to strong ordering interactions, In this Letter, we report the first observation of helical single lamellar crystals of synthetic non-racemic chiral polymers. Experimental evidence shows that the molecular chains twist along both the long and short axes of the helical lamellar crystals, which is the first time a double-twist molecular orientation in a helical crystal has been observed.
Resumo:
Phase structures and transformation mechanisms of nonracemic chiral biological and synthetic polymers are fundamentally important topics in understanding their macroscopic responses in different environments. It has been known for many years that helical structures and morphologies can exist in low-ordered chiral liquid crystalline (LC) phases. However, when the chiral liquid crystals form highly ordered smectic liquid crystal phases, the helical morphology is suppressed due to the crystallization process. A double-twisted morphology has been observed in many liquid crystalline biopolymers such as dinoflaggellate chromosomes (in Prorocentrum micans) in an in vivo arrangement. Helical crystals grown from solution have been reported in the case of Bombyx mori silk fibroin crystals having the beta modification. This study describes a synthetic nonracemic chiral main-chain LC polyester that is able to thermotropically form helical single lamellar crystals. Flat single lamellar crystals can also be observed under the same crystallization condition. Moreover, flat and helical lamellae can coexist in one single lamellar crystal, within which one form can smoothly transform to the other. Both of these crystals possess the same structure, although translational symmetry is broken in the helical crystals. The polymer chain folding direction in both flat and helical lamellar crystals is determined to be identical, and it is always along the long axis of the lamellae. This finding provides an opportunity to study the chirality effect on phase structure, morphology, and transformation in condensed states of chiral materials. [S0163-1829(99)01042-5].
Resumo:
This article documents the addition of 512 microsatellite marker loci and nine pairs of Single Nucleotide Polymorphism (SNP) sequencing primers to the Molecular Ecology Resources Database. Loci were developed for the following species: Alcippe morrisonia morrisonia, Bashania fangiana, Bashania fargesii, Chaetodon vagabundus, Colletes floralis, Coluber constrictor flaviventris, Coptotermes gestroi, Crotophaga major, Cyprinella lutrensis, Danaus plexippus, Fagus grandifolia, Falco tinnunculus, Fletcherimyia fletcheri, Hydrilla verticillata, Laterallus jamaicensis coturniculus, Leavenworthia alabamica, Marmosops incanus, Miichthys miiuy, Nasua nasua, Noturus exilis, Odontesthes bonariensis, Quadrula fragosa, Pinctada maxima, Pseudaletia separata, Pseudoperonospora cubensis, Podocarpus elatus, Portunus trituberculatus, Rhagoletis cerasi, Rhinella schneideri, Sarracenia alata, Skeletonema marinoi, Sminthurus viridis, Syngnathus abaster, Uroteuthis (Photololigo) chinensis, Verticillium dahliae, Wasmannia auropunctata, and Zygochlamys patagonica. These loci were cross-tested on the following species: Chaetodon baronessa, Falco columbarius, Falco eleonorae, Falco naumanni, Falco peregrinus, Falco subbuteo, Didelphis aurita, Gracilinanus microtarsus, Marmosops paulensis, Monodelphis Americana, Odontesthes hatcheri, Podocarpus grayi, Podocarpus lawrencei, Podocarpus smithii, Portunus pelagicus, Syngnathus acus, Syngnathus typhle,Uroteuthis (Photololigo) edulis, Uroteuthis (Photololigo) duvauceli and Verticillium albo-atrum. This article also documents the addition of nine sequencing primer pairs and sixteen allele specific primers or probes for Oncorhynchus mykiss and Oncorhynchus tshawytscha; these primers and assays were cross-tested in both species.
Resumo:
The Message-Driven Processor is a node of a large-scale multiprocessor being developed by the Concurrent VLSI Architecture Group. It is intended to support fine-grained, message passing, parallel computation. It contains several novel architectural features, such as a low-latency network interface, extensive type-checking hardware, and on-chip memory that can be used as an associative lookup table. This document is a programmer's guide to the MDP. It describes the processor's register architecture, instruction set, and the data types supported by the processor. It also details the MDP's message sending and exception handling facilities.
Resumo:
Heart failure is accompanied by severely impaired beta-adrenergic receptor (betaAR) function, which includes loss of betaAR density and functional uncoupling of remaining receptors. An important mechanism for the rapid desensitization of betaAR function is agonist-stimulated receptor phosphorylation by the betaAR kinase (betaARK1), an enzyme known to be elevated in failing human heart tissue. To investigate whether alterations in betaAR function contribute to the development of myocardial failure, transgenic mice with cardiac-restricted overexpression of either a peptide inhibitor of betaARK1 or the beta2AR were mated into a genetic model of murine heart failure (MLP-/-). In vivo cardiac function was assessed by echocardiography and cardiac catheterization. Both MLP-/- and MLP-/-/beta2AR mice had enlarged left ventricular (LV) chambers with significantly reduced fractional shortening and mean velocity of circumferential fiber shortening. In contrast, MLP-/-/betaARKct mice had normal LV chamber size and function. Basal LV contractility in the MLP-/-/betaARKct mice, as measured by LV dP/dtmax, was increased significantly compared with the MLP-/- mice but less than controls. Importantly, heightened betaAR desensitization in the MLP-/- mice, measured in vivo (responsiveness to isoproterenol) and in vitro (isoproterenol-stimulated membrane adenylyl cyclase activity), was completely reversed with overexpression of the betaARK1 inhibitor. We report here the striking finding that overexpression of this inhibitor prevents the development of cardiomyopathy in this murine model of heart failure. These findings implicate abnormal betaAR-G protein coupling in the pathogenesis of the failing heart and point the way toward development of agents to inhibit betaARK1 as a novel mode of therapy.