998 resultados para Cerâmica - Propriedades elétricas


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The WTP produce many kinds of residue on your treatment stages, but the sludge is the more problematic from the final disposition point view. The actual rate of residue production deriving from technological evolution and the crescent population needs prevents the subtle equilibrium generation between consumption and recycling/reuse, creating problems of pollution resulting from inappropriate management of residues. Thus, is necessary achieve a new equilibrium between the grow from raw materials and energy and the residue generation. This equilibrium should be achieved by technical and economic feasibility of environmental supported models through recycling and reuse. The red ceramic industry stand out in residue absorption question as raw material due their clay mass heterogeneity, constituted by clay minerals and non-clay minerals with wide mineralogical variation, allowing residue inclusion which act like plastic or non-plastic materials, contributing to retain heavy metals contained in residues in the vitreous mass formed during the burning of the ceramic bodies. This work propose the study of the influence of incorporation of 25 wt.% sludge from wastewater treatment plant, according preliminary results, in the mass to produce ceramic bodies. The raw materials was characterized through chemical composition analyses by XRF, mineralogical analyses by XRD, thermal analyses by TG and DTA, Atterberg limits and thermodilatometry. Subsequently was composed the mass with 75 wt.% of clay and 25 wt.% of dried wastewater sludge from UFRN WWTP. Samples with 6,0 x 2,0 x 0,5 cm was produced with unidirectional compacting under pressure of 20MPa and burned in temperatures between 950 and 1,200ºC. After fired, the ceramic bodies have been submitted to physical and mechanical analyses through the measure of firing shrinkage, water absorption, density, apparent porosity and flexural strength; crystallographic analyses through XRD and microstructure analyses by SEM. The technological properties obtained was satisfactory to production of roof tiles with 25 wt.% at 1,200 ºC, but the production of others products at lower temperatures was not feasible

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dielectric porcelain is usually obtained by mixing various raw materials proportions and is used in the production of electronic equipment for various applications, from capacitors of high and low Power to insulators for low, medium, high and extra high voltage, which are used in distribution lines and transmission of electricity.This work was directed to the s tudy of technological properties of technic porcelain, made from raw materials extracted from pegmatites found in the regions of Seridó and the Alto Oeste of Rio Grande do Norte, which are made of kaolin, quartz and feldspar, abundant and high quality in these regions. The technic ceramics were obtained by mixing in appropriate levels, kaolin, feldspar, quartz and clay, the last item from a pottery in the city of Sao Gonçalo do Amarante, Rio Grande do Norte. During the development the following characterizations correlated to raw materials were made: laser particle sizing, x-ray diffraction, DTA and TG. The compositions studied were formed by uniaxial pressing at a pressure of 50 MPa and sintered at temperatures ranging from 1150 to 1350ºC and levels (times) of sintering between 30, 60, 90 and 120 minutes. The characterization of the samples were taken from the analysis of weight loss, linear shrinkage, porosity, stoneware curve, bulk density, flexural strength of three points, SEM and X-ray diffraction, TMA, Dielectric and cross Resistivity. The studied materials can be employed in producing the objects used in electrical engineering such as: insulators for low, medium and high-voltage electrical systems, command devices, bushing insulation for transformers, power capacitors, spark plugs, receptacles for fluorescent and incandescent light bulbs and others

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research presents an overview of the addition steelwork dust of ceramic shingles in order to contribute to the utilization use of such residue. The ceramic industry perspective in the Brazilian State of Piauí is quite promising. Unlike other productive sectors, the ceramic industry uses basically natural raw materials. Its final products are, in short, the result of transforming clay compounds. These raw materials are composed primarily of aluminum oxide, silicon, iron, sodium, magnesium, end calcium, among others. It was verified that steelwork dust is composed primarily of these same oxides, so that its incorporation in to structural ceramics is a very reasonable idea. Both clay and steelwork powder were characterized by AG, XRF, XRD, TGA and DTA. In addition, steelwork dust samples containing (0%, 5%, 10%, 15%, 20% and 25%) were extruded and burned at 800°C, 850°C, 900°C and 950°C. Then t echnological tests of linear shrinkage, water uptake, apparent porosity, apparent density and flexural strengthwere carried at. The results showed the possibility of using steelwork powder in ceramic shingles until 15% significant improvement in physical and mechanical properties. This behavior shows the possibility of burning at temperatures lower than 850ºC, thus promoting a product final cost reduction

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over recent years the structural ceramics industry in Brazil has found a very favorable market for growth. However, difficulties related to productivity and product quality are partially inhibiting this possible growth. An alternative for trying to solve these problems and, thus, provide the pottery industry the feasibility of full development, is the substitution of firewood used in the burning process by natural gas. In order to contribute to this process of technological innovation, this paper studies the effect of co-use of ceramic phyllite and kaolin waste on the properties of a clay matrix, verifying the possible benefits that these raw materials can give to the final product, as well as the possibility of such materials to reduce the heat load necessary to obtain products with equal or superior quality. The study was divided into two steps: characterization of materials and study of formulations. Two clays, a phyllite and a residue of kaolin were characterized by the following techniques: laser granulometry, plasticity index by Atterberg limits, X-ray fluorescence, X-ray diffraction, mineralogical composition by Rietveld, thermogravimetric and differential thermal analysis. To study the formulations, specifically for evaluation of technological properties of the parts, was performed an experimental model that combined planning involving a mixture of three components (standard mass x phyllite x kaolin waste) and a 23 factorial design with central point associated with thermal processing parameters. The experiment was performed with restricted strip-plot randomization. In total, 13 compositional points were investigated within the following constraints: phyllite ≤ 20% by weight, kaolin waste ≤ 40% by weight, and standard mass ≥ 60% by weight. The thermal parameters were used at the following levels: 750 and 950 °C to the firing temperature, 5 and 15 °C/min at the heating rate, 15 and 45min to the baseline. The results showed that the introduction of phyllite and/or kaolin waste in ceramic body produced a number of benefits in properties of the final product, such as: decreased absorption of water, apparent porosity and linear retraction at burn; besides the increase in apparent specific mass and mechanical properties of parts. The best results were obtained in the compositional points where the sum of the levels of kaolin waste and phyllite was maximal (40% by weight), as well as conditions which were used in firing temperatures of 950 °C. Regarding the prospect of savings in heat energy required to form the desired microstructure, the phyllite and the residue of kaolin, for having small particle sizes and constitutions mineralogical phases with the presence of fluxes, contributed to the optimization of the firing cycle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The industrial production of ornamental rocks and the burning of coffee husk generate waste that is discarded into the environment. However, with the study of the incorporation of these residues in ceramic products, may be found an alternative to reducing environmental impacts and detrimental effects on human health caused by its indiscriminate disposal of waste in nature. Thus, this work aimed to study the addition of ashes of the coffee husk and granite residue in matrix of red ceramic. The raw materials were dry milled and sieved to mesh 100. To characterize the raw materials were carried out analyzes of X-ray diffraction (XRD), X-ray fluorescence (XRF), particle size analysis (PSA), differential thermal analysis (DTA) and thermogravimetric analysis (TG). Six formulations were prepared where the clay content was kept constant (70%wt) and ashes contents and granite residue varied from 10, 15, 20 and 30%. Dilatometrics analyzes were performed at four selected formulations, containing them: 100% clay (A100); 70% clay and 30% ashes (A70C30); 70% clay and 30% granite residue (A70G30); and 70% clay, 15% granite residue and 15% ashes (A70G15C15). The samples were prepared by uniaxial compaction with pressure of 25 MPa, and fired at temperatures of 800°C, 850ºC, 900ºC, 950ºC, 1000ºC and 1100°C. Assays were performed to determine the linear shrinkage of burning (LSB), water absorption (WA), apparent porosity (AP), density (D) and tensile bending. Also were performed analyzes of X-ray diffraction (XRD) and scanning electron microscopy (SEM) of the samples fired. The formulations incorporating granite residue and/or ashes reached the required limits of water absorption according to NBR 15270-1 and NBR 15310 and tensile bending according to classical literature (SANTOS, 1989) necessary for the production of tiles and ceramic block for masonry sealing

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The power industry generates as waste ceramic bodies of electrical fuses that are discarded after use. The formulation of ceramic bodies for porcelain electrical insulators using waste from the bodies fuse allocation promotes environmentally appropriate, through the reuse of the material. This work evaluated the technical feasibility of using waste for use in electrical porcelains with formulations containing the residue, feldspar and kaolinite. The raw materials were processed through grinding and sieving to 200 mesh. The ceramic material obtained from the proposed formulations with 25%, 30%, 34% and 40% of the residue went through a vibratory mill for grinding and homogenization, and then were sieved at 325 mesh. The samples were shaped in a uniaxial press, with the application of 25 MPa and sintered at 1100° C, 1150°C, 1200°C, 1225°C and 1250°C, at levels of 20 and 45 minutes. Were also developed bodies of evidence with reference formulations obtained without residue, to establish a comparison on physical, mechanical and electrical. The tests were conducted and technology: linear shrinkage, porosity, water absorption, resistance to bending to three points, measuring insulation resistance electrical resistivity of the material, X-ray diffraction and X-ray fluorescence Waste characterizations pointed to the existence of two phases: mullite and quartz phases are of great importance in the microstructure of the ceramic and this fact reveals a possibility for reuse in electrical porcelains. The mullite is an important constituent because it is a phase that makes it possible to increase the mechanical strength in addition to the body allows the use at high temperatures. The use of ceramic bodies residue fuses, proved feasible for application in electrical porcelain and the most significant results were obtained by the formulations with 25% waste and sintering at 1200°C

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To produce porcelain tiles fluxing agents are used in order to obtain a liquid phase during firing. This liquid phase fills the pores decreasing porosity, water absorption and contributes to material densification. In the porcelain tiles industry, feldspar is the main flux material used, with quantities ranging between 35 and 50%. Studies focus on the discovery of materials with flux characteristics that can reduce the consumption of feldspar by porcelain tiles industry. In this context, the coffee husk ashes, a residue obtained when coffee husks are burned to produce heat for the dryers during the processing of the green fruit, have as main chemical constituents potassium, calcium and magnesium, giving them characteristics of fluxing material. Brazil is the largest coffee producer in the world and is responsible for over 30% of the world s production. In this work a physical treatment of coffee husk ash was carried out in order to eliminate the organic matter and, after this, two by-products were obtained: residual wastes R1 and R2. Both residues were added separately as single fluxes and also in association with feldspar in mixtures with raw materials collected in a porcelain industry located in Dias d Ávila-Ba. The addition of these residues aimed to contribute to the reduction of the consumption of feldspar in the production of porcelain tiles. Specimens were produced with dimensions of 60 mm x 20 mm x 6 mm in an uniaxial die with compacting pressure of 45 MPa. The samples were heated to a temperature of 1200 °C, for 8 minutes. Tests were performed to characterize the raw materials by XRF, XRD, particle size analysis, DTA and TGA and, additionally, the results of the physical properties of water absorption, apparent porosity, linear shrinkage, density, dilatometry, flexural strength and SEM of sintered body were analyzed. Additions of less than 8% of the residue R1 contributed to the decrease of porosity, but the mechanical strength of the samples was not satisfactory. Additions of 5% the R2 residue contributed significantly to decrease the water absorption and apparent porosity, and also to increase the mechanical strength. Samples with addition of feldspar associated with the R2 residue, in proportions of 6.7% of R2 and 6.7% of feldspar, led to results of water absorption of 0.12% and mechanical strength of 46 MPa, having parameters normalized to the manufacture of porcelain stoneware tiles

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Among the industries, those that produce ceramic porcelain for use in construction industry and oil, during the exploration and production period, play an important role in the production of waste. Much research has been carried out both by academia and the productive sector, sometimes reintroducing them in the same production line that generated them, sometimes in areas unrelated to their generation, as in the production of concrete and mortar for the construction, for example, but each one in an isolated way. In this research, the aim is to study the combined incorporation of the waste drill cuttings of oil well and the residue of the polishing of porcelain, generated in the final stage of finishing of this product in a clay matrix, for the production of red pottery, specifically bricks, ceramic blocks and tiles. The clay comes from the municipality of São Gonçalo, RN, the drilling waste is from the Natal basin, in Rio Grande do Norte, and the residue of the polishing proceeds from a ceramic porcelain of the State of Paraíba. For this purpose, we used a mixture of a plastic clay with a non-plastic, in a ratio of 50% each, settling formulations with the addition of these two residues in this clay matrix. In the formulations, both residues were incorporated with a minimum percentage of 2.5% and maximum of 12.5%, varying from 2.5% each, in each formulation, which the sum of the waste be no more than 15%. It should be noted that the residue of the polishing of ceramic porcelain is a IIa class (not inert). The materials were characterized by XRF, XRD, TG, DTA, laser granulometry and the plasticity index. The technological properties of water absorption, apparent porosity, linear shrinkage of burning, flexural tensile strength and bulk density were evaluated after the sintering of the pieces to 850 °C, 950 °C and 1050 °C, with a burning time of 3 hr, 3 hr and 30 minutes, and 3 hr and 50 minutes, respectively, with a heating rate of 10 °C/minute, for all formulations and landing of 30 minutes. To better understand the influence of each residue and temperature on the evaluated properties, we used the factorial planning and its surfaces of response for the interpretation of the results. It was found that the temperature has no statistical significance at a 95% of reliability level in flexural tensile strength and that it decreases the water absorption and the porosity, but increases the shrinkage and the bulk density. The results showed the feasibility of the desired incorporation, but adjusting the temperature to each product and formulation, and that the temperatures of 850 °C and 950 °C were the one that responded to the largest number of formulations

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The state of Rio Grande do Norte presents a great potentiality for the production of ceramic tiles because of having natural raw material in quantity and quality making its economical exploration possible, beyond the great energetic differential of the state, the natural gás. This works aims to study the influence of the dolomite and granulometry concentration and calcinations temperature in the obtaining of formulations for porous coverings which have to be coherent to the project,s specifications. The experiments have involved the physical-chemical and mineralogical characterizations of raw materials and mechanical tests in the dry and burnt proof bodies preceding a mixture experiment planning with the use of the response surface methodology, in order to get the best raw materials combinations to produce a ceramic mass with specific properties. The twelve ceramic masses studied in this work were prepared by the via dry process, characterized, shaped by uniaxial pressing and sinterized in the temperatures of 940ºC, 1000ºC, 1060ºC, 1120ºC and 1180ºC, using a fast burning cycle. The crystalline phases formed during the sintering in the temperatures in study have revealed the presence of anorthite and diopside beyond quartz with a remaining phase. These phases were the main responsible ones by the physical- mechanical properties of the sinterized proof bodies. The proof bodies after the sintering stage have presented water absorption higher than 10% and a good dimensional stability in all studied temperatures. However, the flexural breaking strength results in the temperatures of 940ºC, 1000ºC and 1060ºC, under the temperature zone of the vitrification of ceramic whiteware do not reach the flexural breaking strength specific for the porous wall tile (15 MPa), but in the temperature of 1120ºC next to the vitrification temperature zone, some whiteware ceramic (formulations) has reached the specified value for the porous wall tile. The results of this work have showed that the studied raw materials have great importance for used in the production of porous wall tiles (BIII)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The world market of Kaolin has been growing as new investments for better quality of materials have been applied. This market produces amounts of dross that are put in the environment in a wrong way, causing damages to it. Trying to reduce these damages, researches have been done in an attempt to use kaolin dross in ceramic. The disposal of kaolin dross in the environment by the industries of the states of Rio Grande do Norte and Paraiba have great impact in society. Usually this dross is disposed clandestinely in places like roads, river banks and lands of small cities. The present work shows the characteristics of the kaolin produced by the mining company in Junco do Seridó, Paraiba state, western Seridó, 300 km from Natal, in the border of both states. After that, researches were done to study its physical and the chemistry characteristics, trying to see if it can be used in white ceramic. The samples got were bolted in fabric of 325# . The technological characteristics tried to use it as a product in white ceramic. For that, it was made a haracterization of the subject matter through enlargement analyses, ATG and ATD, elaborating three formulations that were burned in four different temperatures, 1175, 1200, 1250 and 1300 degrees centigrade up to 30 minutes. After the burning, the subjects were submitted to water absorbing tests, linear retreating, apparent porosity, apparent specific mass, resistance to flexibility and MEV. For one of the mixtures it was obtained demanded properties for a semi porous material

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The marble and granite waste come from the process of mining of those ornamental rocks for use in the building industry. Brazil is one of the largest producers of blocks or finished products of ornamental rocks, extracting about 5.2 tons / year. The largest national producers are the states of Espírito Santo, Minas Gerais and Bahia which account for 80% of the Brazilian production. However, the waste total amount during processing of these blocks reaches 40% of the total. The use of the waste produced by this industry in white ceramics could be a form of disposition, because these materials, are thrownasa mud directly at decantation ponds, wastelands or in rivers, without any treatment. The present work has as main purpose to study the influence that reject of the ornamental rocks on the physical and mechanical properties of white ceramics. X-Ray characterizations of raw materials by were performed X-Ray fluorescence, X-Ray diffraction, granulometric, thermogravimetric and thermodiferencial analysis, five formulations were made (0, 10, 20, 30, 40% in granite weight) wich were burned at three temperatures: 1100°C, 1150°C and 1200ºC with 60 minutes of sorling time. After sintering, the samples were submitted to different analyser absorption of water, linear retraction, apparent porosity, apparent specific mass, flexival stronght, and scanning were obtained microscopy. Compatible technological properties within the limits demanded for the production of porcelainized stoneware

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The red ceramics and structural ceramics, as they are known, include ceramic materials made by blocks of seals and structures, bricks, tiles, smail flagstones manacles, rustic floors and ornamental materials. Their fabrication uses raw material such as clay and clay sites, with some content of impurity. It has good durability and mechanical strength to compression, low cost, making it one of the mainly used materials in civil engineering. The incorporation of many industrial activities residue to ceramic products is a technological alternative for reducing the environmental impact caused by its carefree disposal. This incorporation can promote chemical change and inertness of metals from residue, by fixation in the glassy phase of ceramic during the burning stage. The main aim of this project is to study the technical feasibility of the addition of ceramic oven ash into formulations of mass for structural ceramics. In this project two kinds of clay (plastic and non-plastic) were used, as well as the ash from firewood used in the process of burning of structural ceramics. A group of experiments was outlined, which permitted the evaluation of the influence of the burning cycle in different temperatures of the ash content in formulations for ceramic blocks through technological properties, mechanical behavior and microstructure. Five samples were processed of each one of the masses of plastic and non-plastic clay without addition of ash and with addition of ash on the percentages of 10 % and 20 %, for temperatures of 850 °C, 950 °C, 1050 °C and 1150 °C, obtained through sinterization process. Among the studied compositions, the one which presented best performance was the mass of clay with 10 % of ash, at temperature of 1150 °C, with the smallest absorption of water, the smallest apparent porosity, specific apparent mass a bit over the others and greatest mechanical resistance to flexion. The composition made confirmed the technical feasibility of the use of ash in the mass for structural ceramics with maintenance of its necessary characteristics for its purposes

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Companies involved in emerald mining and treatment represent an important area of industrial development in Brazil, with significative contribution to the worldwide production of such mineral. As a result, large volumes of emerald waste are constantly generated and abandoned in the environment, negatively contributing to its preservation. By the other side the interest of the use of mining waste as additive in ceramic products has been growing from researchers in recent years. The ceramic industry is constantly seeking to the marked amplification for the sector and perfecting the quality of the products and to increase the variety of applications. The technology of obtaining of ceramic tiles that uses mining residues assists market niches little explored. In this scenario, the objective of the present study was to characterize the residue generated from emerald mining as well as to assess its potential use as raw material for the production of ceramic tiles. Ceramic mixtures were prepared from raw materials characterized by X-ray fluorescence, X-ray diffraction, particle size analysis and thermal analysis. Five compositions were prepared using emerald residue contents of 0%, 10%, 20%, 30% and 40%. Samples were uniaxially pressed, fired at 1000, 1100 and 1200ºC and characterized aiming at establishing their mineralogical composition, water absorption, apparent porosity, specific mass, linear retraction and modulus of rupture. The results shows that the emerald residue, basically consisted of 73% of (SiO2 + Al2O3) and 17,77% of (MgO + Na2O+ K2O) (that facilitates sintering), can be added to the ceramic tile materials with no detrimental effect on the properties of the sintered products

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents research into the addition of chamotte obtained from the ceramic isolator of unusable spark plugs in formulations of material mixes for standard white ceramic material with aluminum oxide bases. After the physical chemical characterization of the primary materials, standard clay and the chamotte, three mixtures were prepared with concentrations of 10, 20 and 30% chamotte by weight in relation to the standard clay. The test samples underwent heating at a rate of 30 0C/min to levels that included 100o , 200o , 300o, 400o, 500o e 600 0C and also we submitted to three distinct burn temperatures: 1450o, 1500o e 1550 0C, remaining at these temperatures for 2 hour periods. After sintering, the physical and microstructural properties of the different test samples were measured and analyzed. The results show that the materials obtained present good technical properties and that the chamotte can be reutilized as an additive in the production of white ceramic material with an aluminum oxide base

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Particularly in Braziland in Rio Grande do Norte, companies manufacturing red ceramic, play an important role as agents of development to study the region Seridó- RN, specific place for carrying out the research. It is observed in this region a concentration of red ceramic industries of small size, which, despite its importance in the ceramic, they are unable to enjoy or use the new forms of administrative management and technological advances designed and offered by universities, centers of research and projects of governments, remained almost entirely outside the progress and modernization, technological and administrative. These companies still have outdated technology, and management processes, providing quality problems and standardization of end products. Upon these conditions are the companies going through crisis and struggling to survive alone and without assistance. The region of Seridó-RN, lets make a detailed case study of red ceramic companies in the region proposed from the existing theoretical and actual lifting of the condition of the product manufacturing red ceramic, allowing through this overview of the implementation of collect samples of raw materials, allowing the study of each ceramic industry that contributed to the participation of the research, which was determined parameters such as: analysis of the physical, chemical and technological properties of raw materials, characterization of the processes used, raising the technological resources considering equipment, machinery, supplies, raw materials and facilities available and its organization by type of products from companies involved in this study. The methodology consists of the following steps: collection of raw material, crushing and screening, characterization of raw materials (liquid limit, chemical analysis, mineralogical analysis, differential thermal analysis, sieve analysis), mixing, forming, cutting, drying and burning of ceramic bodies and bodies of evidence. The results showed that it was clay with distinct characteristics with respect to plasticity. With respect to the different compositions of mixtures of ceramic masses, we conclude that the ceramic properties showed a direct proportionality with increasing fraction of the clay not plastic. However, the compositions of the masses studied proved to be the most appropriate for the types of simulated clay for use in ceramics. Adopted in the ceramic processing made it possible to obtain products the resulted in consistent properties, and in some cases even exceeding the requirements of technical studies and standard-Brazilian clays to obtain ceramic products such as tiles, bricks and tiles to floor. Based on the discussions from the results obtained in the various processing steps of this work, one can draw conclusions according to the physico-chemical and mineralogical properties of raw materials, the properties of ceramic products burned and analysis. This work may be used by other researchers, private companies and governmental organizations, undergraduate students and graduate, can develop studies and future research to: develop projects to modify the furnaces; mapping projects develop and rationalize the exploitation of raw materials ;promoting reforestation and forest management; develop reduction projects and recovery of waste; develop training projects in manpower sector, and develop security projects, improving the conditions of work in the area pottery