922 resultados para Ca2 -related genes


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Activity-dependent plasticity is thought to underlie both formation of appropriate synaptic connections during development and reorganization of adult cortical topography. We have recently cloned many candidate plasticity-related genes (CPGs) induced by glutamate-receptor activation in the hippocampus. Screening the CPG pool for genes that may contribute to neocortical plasticity resulted in the identification of six genes that are induced in adult visual cortical areas in response to light. These genes are also naturally induced during postnatal cortical development. CPG induction by visual stimulation occurs primarily in neurons located in cortical layers II-III and VI and persists for at least 48 hr. Four of the visually responsive CPGs (cpg2, cpg15, cpg22, cpg29) are previously unreported genes, one of which (cpg2) predicts a "mini-dystrophin-like" structural protein. These results lend molecular genetic support to physiological and anatomical studies showing activity-dependent structural reorganization in adult cortex. In addition, these results provide candidate genes the function of which may underlie mechanisms of adult cortical reorganization.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have used suspension-cultured parsley cells (Petroselinum crispum) and an oligopeptide elicitor derived from a surface glycoprotein of the phytopathogenic fungus Phytophthora megasperma f.sp. glycinea to study the signaling pathway from elicitor recognition to defense gene activation. Immediately after specific binding of the elicitor by a receptor in the plasma membrane, large and transient increases in several inorganic ion fluxes (Ca2+, H+, K+, Cl-) and H2O2 formation are the first detectable plant cell responses. These are rapidly followed by transient changes in the phosphorylation status of various proteins and by the activation of numerous defense-related genes, concomitant with the inactivation of several other, non-defense-related genes. A great diversity of cis-acting elements and trans-acting factors appears to be involved in elicitor-mediated gene regulation, similar to the apparently complex nature of the signal transduced intracellularly. With few exceptions, all individual defense responses analyzed in fungus-infected parsley leaves have been found to be closely mimicked in elicitor-treated, cultured parsley cells, thus validating the use of the elicitor/cell culture system as a valuable model system for these types of study.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Liver X receptors (LXRs) are ligand-activated members of the nuclear receptor superfamily that regulate the expression of genes involved in lipid metabolism and inflammation, although their role in inflammation and immunity is less well known. It has been reported that oxysterols/LXRs may act as anti-inflammatory molecules, although opposite actions have also been reported. In this study, we investigated the effect of platelet-activating factor (PAF), a proinflammatory molecule, on LXRα signalling in human neutrophils. We found that PAF exerted an inhibitory effect on mRNA expression of TO901317-induced LXRα, ATP-binding cassette transporter A1, ATP-binding cassette transporter G1, and sterol response element binding protein 1c. This negative action was mediated by the PAF receptor, and was dependent on the release of reactive oxygen species elicited by PAF, as it was enhanced by pro-oxidant treatment and reversed by antioxidants. Current data also support the idea that PAF induces phosphorylation of the LXRα molecule in an extracellular signal-regulated kinase 1/2-mediated fashion. These results suggest that a possible mechanism by which PAF exerts its proinflammatory effect is through the downregulation of LXRα and its related genes, which supports the notion that LXRα ligands exert a modulatory role in the neutrophil-mediated inflammatory response.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The cell cycle is one of the most fundamental processes within a cell. Phase-dependent expression and cell-cycle checkpoints require a high level of control. A large number of genes with varying functions and modes of action are responsible for this biology. In a targeted exploration of the FANTOM2-Variable Protein Set, a number of mouse homologs to known cell-cycle regulators as well as novel members of cell-cycle families were identified. Focusing on two prototype cell-cycle families, the cyclins and the NIMA-related kinases (NEKs), we believe we have identified all of the mouse members of these families, 24 cyclins and 10 NEKs, and mapped them to ENSEMBL transcripts. To attempt to globally identify all potential cell cycle-related genes within mouse, the MGI (Mouse Genome Database) assignments for the RIKEN Representative Set (RPS) and the results from two homology-based queries were merged. We identified 1415 genes with possible cell-cycle roles, and 1758 potential paralogs. We comment on the genes identified in this screen and evaluate the merits of each approach.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Sugarcane is an important culture for Brazil that holds almost half of all worldwide productivity. Plants face many challenges, because of biotic and abiotic stresses presents in the production field, which could prevent plants from reaching their genetic potential. As consequence, those stresses can generate Reactive Oxygen Species – ROS – that can cause damages on DNA. Another consequence of stress is the early-flowering process, which contributes for a reduction on yield. In this context, the aim of this work is to characterize ScMUTM1 and ScMUTM2, two DNA glycosylases belonging to base excision repair pathway; and identify genes potentially related to stress and DNA repair in two sugarcane cultivars with contrasting flowering phenotypes. The characterization of the DNA glycosylases included the construction of vector to over express the recombinant proteins ScMUTM1 and ScMUTM2; they will be used in a near future to purification of these proteins and use in enzymatic assays. It was also made a phylogenetic reconstruction of this gene in plants and analysis of its promoter. With the phylogenetic analysis, it is possible to observe the presence of these genes grouped inside a branch with monocots and another one with dicots. This suggests that the duplication of this gene probably occurred after the separation of these two groups. The analysis of the promotor of MUTM shows of the presence of stress-related regulatory motifs at ScMUTM2 promoter, when compared with ScMUTM1. This may suggests that ScMUTM1 might be suffering sub functionalization process. After the analysis of microarrays data, it is observed an up-regulation from some stress-related genes in one of the conditions analyzed, related to early flowering process.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Sugarcane is an important culture for Brazil that holds almost half of all worldwide productivity. Plants face many challenges, because of biotic and abiotic stresses presents in the production field, which could prevent plants from reaching their genetic potential. As consequence, those stresses can generate Reactive Oxygen Species – ROS – that can cause damages on DNA. Another consequence of stress is the early-flowering process, which contributes for a reduction on yield. In this context, the aim of this work is to characterize ScMUTM1 and ScMUTM2, two DNA glycosylases belonging to base excision repair pathway; and identify genes potentially related to stress and DNA repair in two sugarcane cultivars with contrasting flowering phenotypes. The characterization of the DNA glycosylases included the construction of vector to over express the recombinant proteins ScMUTM1 and ScMUTM2; they will be used in a near future to purification of these proteins and use in enzymatic assays. It was also made a phylogenetic reconstruction of this gene in plants and analysis of its promoter. With the phylogenetic analysis, it is possible to observe the presence of these genes grouped inside a branch with monocots and another one with dicots. This suggests that the duplication of this gene probably occurred after the separation of these two groups. The analysis of the promotor of MUTM shows of the presence of stress-related regulatory motifs at ScMUTM2 promoter, when compared with ScMUTM1. This may suggests that ScMUTM1 might be suffering sub functionalization process. After the analysis of microarrays data, it is observed an up-regulation from some stress-related genes in one of the conditions analyzed, related to early flowering process.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Poultry colibacillosis due to Avian Pathogenic Escherichia coli (APEC) is responsible for several extra-intestinal pathological conditions, leading to serious economic damage in poultry production. The most commonly associated pathologies are airsacculitis, colisepticemia, and cellulitis in broiler chickens, and salpingitis and peritonitis in broiler breeders. In this work a total of 66 strains isolated from dead broiler breeders affected with colibacillosis and 61 strains from healthy broilers were studied. Strains from broiler breeders were typified with serogroups O2, O18, and O78, which are mainly associated with disease. The serogroup O78 was the most prevalent (58%). All the strains were checked for the presence of 11 virulence genes: 1) arginine succinyltransferase A (astA); ii) E. coli hemeutilization protein A (chuA); iii) colicin V A/B (cvaA/B); iv) fimbriae mannose-binding type 1 (fimC); v) ferric yersiniabactin uptake A (fyuA); vi) iron-repressible high-molecular-weight proteins 2 (irp2); vii) increased serum survival (iss); viii) iron-uptake systems of E. coli D (iucD); ix) pielonefritis associated to pili C (papC); x) temperature sensitive haemaglutinin (tsh), and xi) vacuolating autotransporter toxin (vat), by Multiplex-PCR. The results showed that all genes are present in both commensal and pathogenic E. coli strains. The iron uptake-related genes and the serum survival gene were more prevalent among APEC. The adhesin genes, except tsh, and the toxin genes, except astA, were also more prevalent among APEC isolates. Except for astA and tsh, APEC strains harbored the majority of the virulence-associated genes studied and fimC was the most prevalent gene, detected in 96.97 and 88.52% of APEC and AFEC strains, respectively. Possession of more than one iron transport system seems to play an important role on APEC survival.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Recentemente tem-se assistido a um acumular de evidência sugerindo a implicação de uma desregulação do metabolismo do ferro (Fe) na fisiopatologia da doença de Alzheimer (DA). Neste trabalho, pretendemos esclarecer melhor os mecanismos moleculares subjacentes à homeostasia deste metal na DA, particularmente ao nível do efluxo celular. Assim, mediu-se em células mononucleares do sangue periférico de 73 doentes com DA e 74 controlos a expressão de genes diretamente envolvidos na regulação e exportação celular de Fe, utilizando a técnica de PCR quantitativo. Os resultados mostraram uma diminuição significativa na expressão dos genes aconitase (ACO1; P=0,007); ceruloplasmina (CP; P<0,001) e proteína precursora de beta amilóide (APP; P=0,006) em doentes com DA comparativamente com os voluntários saudáveis. Estas observações apontam para uma diminuição significativa da expressão dos genes associados com a exportação de Fe celular mediada pela ferroportina na DA. Assim, o presente estudo reforça resultados anteriores que mostram alterações no metabolismo do Fe e podem estar na origem da retenção intracelular deste metal e aumento de stress oxidativo caraterísticos desta patologia.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Etiological diagnosis of diarrheal diseases may be complicated by their multi-factorial nature. In addition, Escherichia coli strains present in the gut can occasionally harbor VGs without causing disease, which complicates the assessment of their clinical significance in particular. The aim of this study was to detect and quantify nine VGs (stx1, stx2, eae, aggR, ehxA, invA, est and elt) typically present in five E. coli enteric pathotypes (EHEC, ETEC, EPEC, EAEC and EIEC) in fecal samples collected from 49 patients with acute diarrhea and 32 healthy controls from Madrid, Spain. In addition, the presence of four serotype-related genes (wzxO104 and fliCH4, rbfO157 and fliCH7) was also determined. Presence of target genes was assessed using a quantitative real-time PCR assay previously developed, and the association of presence and burden of VGs with clinical disease and/or other risk factors was explored. Prevalence of ehxA (typically associated with STEC and EPEC), invA (EIEC) and the rbfO157+fliCH7 (STEC and/or STEC/EAEC) combination were significantly (p<0.02) higher in the diarrheic group, while the wzxO104+fliCH4 combination was significantly (p=0.014) more prevalent in the control group. On the other hand, eae was detected in more than 90% of the individuals in both patient and control populations, and it was not associated with bfpA, suggesting the absence of typical EPEC. No significant differences in the quantitative values were detected for any VG among study groups, but the difference in the load of aggR (EAEC) and invA in the patients with respect to the controls was close to the significance, suggesting a potential role of these VGs in the clinical signs observed when they are present at high levels.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The tissue kallikreins are serine proteases encoded by highly conserved multigene families. The rodent kallikrein (KLK) families are particularly large, consisting of 13 26 genes clustered in one chromosomal locus. It has been recently recognised that the human KLK gene family is of a similar size (15 genes) with the identification of another 12 related genes (KLK4-KLK15) within and adjacent to the original human KLK locus (KLK1-3) on chromosome 19q13.4. The structural organisation and size of these new genes is similar to that of other KLK genes except for additional exons encoding 5 or 3 untranslated regions. Moreover, many of these genes have multiple mRNA transcripts, a trait not observed with rodent genes. Unlike all other kallikreins, the KLK4-KLK15 encoded proteases are less related (25–44%) and do not contain a conventional kallikrein loop. Clusters of genes exhibit high prostatic (KLK2-4, KLK15) or pancreatic (KLK6-13) expression, suggesting evolutionary conservation of elements conferring tissue specificity. These genes are also expressed, to varying degrees, in a wider range of tissues suggesting a functional involvement of these newer human kallikrein proteases in a diverse range of physiological processes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Height is a complex physical trait that displays strong heritability. Adult height is related to length of the long bones, which is determined by growth at the epiphyseal growth plate. Longitudinal bone growth occurs via the process of endochondral ossification, where bone forms over the differentiating cartilage template at the growth plate. Estrogen plays a major role in regulating longitudinal bone growth and is responsible for inducing the pubertal growth spurt and fusion of the epiphyseal growth plate. However, the mechanism by which estrogen promotes epiphyseal fusion is poorly understood. It has been hypothesised that estrogen functions to regulate growth plate fusion by stimulating chondrocyte apoptosis, angiogenesis and bone cell invasion in the growth plate. Another theory has suggested that estrogen exposure exhausts the proliferative capacity of growth plate chondrocytes, which accelerates the process of chondrocyte senescence, leading to growth plate fusion. The overall objective of this study was to gain a greater understanding of the molecular mechanisms behind estrogen-mediated growth and height attainment by examining gene regulation in chondrocytes and the role of some of these genes in normal height inheritance. With the heritability of height so well established, the initial hypothesis was that genetic variation in candidate genes associated with longitudinal bone growth would be involved in normal adult height variation. The height-related genes FGFR3, CBFA1, ER and CBFA1 were screened for novel polymorphisms using denaturing HPLC and RFLP analysis. In total, 24 polymorphisms were identified. Two SNPs in ER (rs3757323 C>T and rs1801132 G>C) were strongly associated with adult male height and displayed an 8 cm and 9 cm height difference between homozygous genotypes, respectively. The TC haplotype of these SNPs was associated with a 6 cm decrease in height and remarkably, no homozygous carriers of the TC haplotype were identified in tall subjects. No significant associations with height were found for polymorphisms in the FGFR3, CBFA1 or VDR genes. In the epiphyseal growth plate, chondrocyte proliferation, matrix synthesis and chondrocyte hypertrophy are all major contributors to long bone growth. As estrogen plays such a significant role in both growth and final height attainment, another hypothesis of this study was that estrogen exerted its effects in the growth plate by influencing chondrocyte proliferation and mediating the expression of chondrocyte marker genes. The examination of genes regulated by estrogen in chondrocyte-like cells aimed to identify potential regulators of growth plate fusion, which may further elucidate mechanisms involved in the cessation of linear growth. While estrogen did not dramatically alter the proliferation of the SW1353 cell line, gene expression experiments identified several estrogen regulated genes. Sixteen chondrocyte marker genes were examined in response to estrogen concentrations ranging from 10-12 M to 10-8 M over varying time points. Of the genes analysed, IHH, FGFR3, collagen II and collagen X were not readily detectable and PTHrP, GHR, ER, BMP6, SOX9 and TGF1 mRNAs showed no significant response to estrogen treatments. However, the expression of MMP13, CBFA1, BCL-2 and BAX genes were significantly decreased. Interestingly, the majority of estrogen regulated genes in SW1353 cells are expressed in the hypertrophic zone of the growth plate. Estrogen is also known to regulate systemic GH secretion and local GH action. At the molecular level, estrogen functions to inhibit GH action by negatively regulating GH signalling. GH treated SW1353 cells displayed increases in MMP9 mRNA expression (4.4-fold) and MMP13 mRNA expression (64-fold) in SW1353 cells. Increases were also detected in their respective proteins. Treatment with AG490, an established JAK2 inhibitor, blocked the GH mediated stimulation of both MMP9 and MMP13 mRNA expression. The application of estrogen and GH to SW1353 cells attenuated GH-stimulated MMP13 levels, but did not affect MMP9 levels. Investigation of GH signalling revealed that SW1353 cells have high levels of activated JAK2 and exposure to GH, estrogen, AG490 and other signalling inhibitors did not affect JAK2 phosphorylation. Interestingly, AG490 treatment dramatically decreased ERK2 signalling, although GH did stimulate ERK2 phosphorylation above control levels. AG490 also decreased CBFA1 expression, a transcription factor known to activate MMP9 and MMP13. Finally, GH and estrogen treatment increased expression of SOCS3 mRNA, suggesting that SOCS3 may regulate JAK/STAT signalling in SW1353 cells. The modulation of GH-mediated MMP expression by estrogen in SW1353 cells represents a potentially novel mechanism by which estrogen may regulate longitudinal bone growth. However, further investigation is required in order to elucidate the precise mechanisms behind estrogen and GH regulation of MMP13 expression in SW1353 cells. This study has provided additional evidence that estrogen and the ER gene are major factors in the regulation of growth and the determination of adult height. Newly identified polymorphisms in the ER gene not only contribute to our understanding of the genetic basis of human height, but may also be useful in association studies examining other complex traits. This study also identified several estrogen regulated genes and indicated that estrogen modifies the expression of genes which are primarily expressed in the hypertrophic region of the epiphyseal growth plate. Furthermore, synergistic studies incorporating GH and estrogen have revealed the ability of estrogen to attenuate the effects of GH on MMP13 expression, revealing potential pathways by which estrogen may modulate growth plate fusion, longitudinal bone growth and even arthritis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Biomineralization is a process encompassing all mineral containing tissues produced within an organism. The most dynamic example of this process is the formation of the mollusk shell, comprising a variety of crystal phases and microstructures. The organic component incorporated within the shell is said to dictate this remarkable architecture. Subsequently, for the past decade considerable research have been undertaken to identify and characterize the protein components involved in biomineralization. Despite these efforts the general understanding of the process remains ambiguous. This study employs a novel molecular approach to further the elucidation of the shell biomineralization. A microarray platform has been custom generated (PmaxArray 1.0) from the pearl oyster Pinctada maxima. PmaxArray 1.0 consists of 4992 expressed sequence tags (ESTs) originating from the mantle, an organ involved in shell formation. This microarray has been used as the primary tool for three separate investigations in an effort to associate transcriptional gene expression from P. maxima to the process of shell biomineralization. The first investigation analyzes the spatial expression of ESTs throughout the mantle organ. The mantle was dissected into five discrete regions and each analyzed for gene expression with PmaxArray 1.0. Over 2000 ESTs were differentially expressed among the tissue sections, identifying five major expression regions. Three of these regions have been proposed to have shell formation functions belonging to nacre, prismatic calcite and periostracum. The spatial gene expression map was confirmed by in situ hybridization, localizing a subset of ESTs from each expression region to the same mantle area. Comparative sequence analysis of ESTs expressed in the proposed shell formation regions with the BLAST tool, revealed a number of the transcripts were novel while others showed significant sequence similarities to previously characterized shell formation genes. The second investigation correlates temporal EST expression during P. maxima larval ontogeny with transitions in shell mineralization during the same period. A timeline documenting the morphologicat microstructural and mineralogical shell characteristics of P. maxima throughout larval ontogeny has been established. Three different shell types were noted based on the physical characters and termed, prodissoconch I, prodissoconch 11 and dissoconch. PmaxArray 1.0 analyzed ESTs expression of animals throughout the larval development of P. maxima, noting up-regulation of 359 ESTs in association with the shell transitions from prodissoconch 1 to prodissoconch 11 to dissoconch. Comparative sequence analysis of these ESTs indicates a number of the transcripts are novel as well as showing significant sequence similarities between ESTs and known shell matrix associated genes and proteins. These ESTs are discussed in relation to the shell characters associated with their temporal expression. The third investigation uses PmaxArray 1.0 to analyze gene expression in the mantle tissue of P. maxima specimens exposed to sub-lethal concentrations of a shell-deforming toxin, tributyltin (TBT). The shell specific effects of TBT are used in this investigation to interpret differential expression of ESTs with respect to shell formation functions. A lethal and sublethal TBT concentration range was established for P. maxima, noting a concentration of 50 ng L- 1 TBT as sub-lethal over a 21 day period. Mantle tissue from P. maxima animals treated with 50 ng L- 1 TBT was assessed for differential EST expression with untreated control animals. A total of 102 ESTs were identified as differentially expressed in association with TBT exposure, comparative sequence identities included an up-regulation of immunity and detoxification related genes and down-regulation of several shell matrix genes. A number of transcripts encoding novel peptides were additionally identified. The potential actions of these genes are discussed with reference to TBT toxicity and shell biomineralization. This thesis has used a microarray platform to analyze gene expression in spatial, temporal and toxicity investigations, revealing the involvement of numerous gene transcripts in specific shell formation functions. Investigation of thousands of transcripts simultaneously has provided a holistic interpretation of the organic components regulating shell biomineralization.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Osteophytes form through the process of chondroid metamorphosis of fibrous tissue followed by endochondral ossification. Osteophytes have been found to consist of three different mesenchymal tissue regions including endochondral bone formation within cartilage residues, intra-membranous bone formation within fibrous tissue and bone formation within bone marrow spaces. All these features provide evidence of mesenchymal stem cells (MSC) involvement in osteophyte formation; nevertheless, it remains to be characterised. MSC from numerous mesenchymal tissues have been isolated but bone marrow remains the “ideal” due to the ease of ex vivo expansion and multilineage potential. However, the bone marrow stroma has a relatively low number of MSC, something that necessitates the need for long-term culture and extensive population doublings in order to obtain a sufficient number of cells for therapeutic applications. MSC in vitro have limited proliferative capacity and extensive passaging compromises differentiation potential. To overcome this barrier, tissue derived MSC are of strong interest for extensive study and characterisation, with a focus on their potential application in therapeutic tissue regeneration. To date, no MSC type cell has been isolated from osteophyte tissue, despite this tissue exhibiting all the hallmark features of a regenerative tissue. Therefore, this study aimed to isolate and characterise cells from osteophyte tissues in relation to their phenotype, differentiation potential, immuno-modulatory properties, proliferation, cellular ageing, longevity and chondrogenesis in in vitro defect model in comparison to patient matched bone marrow stromal cells (bMSC). Osteophyte derived cells were isolated from osteophyte tissue samples collected during knee replacement surgery. These cells were characterised by the expression of cell surface antigens, differentiation potential into mesenchymal lineages, growth kinetics and modulation of allo-immune responses. Multipotential stem cells were identified from all osteophyte samples namely osteophyte derived mesenchymal stem cells (oMSC). Extensively expanded cell cultures (passage 4 and 9 respectively) were used to confirm cytogenetic stability and study signs of cellular aging, telomere length and telomerase activity. Cultured cells at passage 4 were used to determine 84 pathway focused stem cell related gene expression profile. Micro mass pellets were cultured in chondrogenic differentiation media for 21 days for phenotypic and chondrogenic related gene expression. Secondly, cell pellets differentiated overnight were placed into articular cartilage defects and cultured for further 21 days in control medium and chondrogenic medium to study chondrogenesis and cell behaviour. The surface antigen expression of oMSC was consistent with that of mesenchymal stem cells, such as lacking the haematopoietic and common leukocyte markers (CD34, CD45) while expressing those related to adhesion (CD29, CD166, CD44) and stem cells (CD90, CD105, CD73). The proliferation capacity of oMSC in culture was superior to that of bMSC, and they readily differentiated into tissues of the mesenchymal lineages. oMSC also demonstrated the ability to suppress allogeneic T-cell proliferation, which was associated with the expression of tryptophan degrading enzyme indoleamine 2,3 dioxygenase (IDO). Cellular aging was more prominent in late passage bMSC than in oMSC. oMSC had longer telomere length in late passages compared with bMSC, although there was no significant difference in telomere lengths in the early passages in either cell type. Telomerase activity was detectable only in early passage oMSC and not in bMSC. In osteophyte tissues telomerase positive cells were found to be located peri vascularly and were Stro-1 positive. Eighty-four pathway-focused genes were investigated and only five genes (APC, CCND2, GJB2, NCAM and BMP2) were differentially expressed between bMSC and oMSC. Chondrogenically induced micro mass pellets of oMSC showed higher staining intensity for proteoglycans, aggrecan and collagen II. Differential expression of chondrogenic related genes showed up regulation of Aggrecan and Sox 9 in oMSC and collagen II in bMSC. The in vitro defect models of oMSC in control medium showed rounded and aggregated cells staining positively for proteoglycan and presence of some extracellular matrix. In contrast, defects with bMSC showed fragmentation and loss of cells, fibroblast-like cell morphology staining positively for proteoglycans. For defects maintained in chondrogenic medium, rounded, aggregated and proteoglycan positive cells were found in both oMSC and bMSC cultures. Extracellular matrix and cellular integration into newly formed matrix was evident only in oMSC defects. For analysis of chondrocyte hypertrophy, strong expression of type X collagen could be noticed in the pellet cultures and transplanted bMSC. In summary, this study demonstrated that osteophyte derived cells had similar properties to mesenchymal stem cells in the expression of antigen phenotype, differential potential and suppression of allo-immune response. Furthermore, when compared to bMSC, oMSC maintained a higher proliferative capacity due to a retained level of telomerase activity in vitro, which may account for the relatively longer telomeres delaying growth arrest by replicative senescence compared with bMSC. oMSC behaviour in defects supported chondrogenesis which implies that cells derived from regenerative tissue can be an alternative source of stem cells and have a potential clinical application for therapeutic stem cell based tissue regeneration.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Multipotent mesenchymal stem cells (MSCs), first identified in the bone marrow, have subsequently been found in many other tissues, including fat, cartilage, muscle, and bone. Adipose tissue has been identified as an alternative to bone marrow as a source for the isolation of MSCs, as it is neither limited in volume nor as invasive in the harvesting. This study compares the multipotentiality of bone marrow-derived mesenchymal stem cells (BMSCs) with that of adipose-derived mesenchymal stem cells (AMSCs) from 12 age- and sex-matched donors. Phenotypically, the cells are very similar, with only three surface markers, CD106, CD146, and HLA-ABC, differentially expressed in the BMSCs. Although colony-forming units-fibroblastic numbers in BMSCs were higher than in AMSCs, the expression of multiple stem cell-related genes, like that of fibroblast growth factor 2 (FGF2), the Wnt pathway effectors FRAT1 and frizzled 1, and other self-renewal markers, was greater in AMSCs. Furthermore, AMSCs displayed enhanced osteogenic and adipogenic potential, whereas BMSCs formed chondrocytes more readily than AMSCs. However, by removing the effects of proliferation from the experiment, AMSCs no longer out-performed BMSCs in their ability to undergo osteogenic and adipogenic differentiation. Inhibition of the FGF2/fibroblast growth factor receptor 1 signaling pathway demonstrated that FGF2 is required for the proliferation of both AMSCs and BMSCs, yet blocking FGF2 signaling had no direct effect on osteogenic differentiation. Disclosure of potential conflicts of interest is found at the end of this article.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Smart matrices are required in bone tissueengineered grafts that provide an optimal environment for cells and retain osteo-inductive factors for sustained biological activity. We hypothesized that a slow-degrading heparin-incorporated hyaluronan (HA) hydrogel can preserve BMP-2; while an arterio–venous (A–V) loop can support axial vascularization to provide nutrition for a bioartificial bone graft. HA was evaluated for osteoblast growth and BMP-2 release. Porous PLDLLA–TCP–PCL scaffolds were produced by rapid prototyping technology and applied in vivo along with HA-hydrogel, loaded with either primary osteoblasts or BMP-2. A microsurgically created A–V loop was placed around the scaffold, encased in an isolation chamber in Lewis rats. HA-hydrogel supported growth of osteoblasts over 8 weeks and allowed sustained release of BMP-2 over 35 days. The A–V loop provided an angiogenic stimulus with the formation of vascularized tissue in the scaffolds. Bone-specific genes were detected by real time RT-PCR after 8 weeks. However, no significant amount of bone was observed histologically. The heterotopic isolation chamber in combination with absent biomechanical stimulation might explain the insufficient bone formation despite adequate expression of bone-related genes. Optimization of the interplay of osteogenic cells and osteo-inductive factors might eventually generate sufficient amounts of axially vascularized bone grafts for reconstructive surgery.