912 resultados para CORROSION RESISTANT ALLOYS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, the susceptibility to stress corrosion cracking (SCC) of laser-welded NiTi wires in Hanks’ solution at 37.5 °C was studied by the slow strain-rate test (SSRT) at open-circuit potential and at different applied anodic potentials. The weldment shows high susceptibility to SCC when the applied potential is near to the pitting potential of the heat-affected zone (HAZ). The pits formed in the HAZ become sites of crack initiation when stress is applied, and cracks propagate in an intergranular mode under the combined effect of corrosion and stress. In contrast, the base-metal is immune to SCC under similar conditions. The increase in susceptibility to SCC in the weldment could be attributed to the poor corrosion resistance in the coarse-grained HAZ.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Post-weld heat-treatment (PWHT) was applied to NiTi weldments to improve the corrosion behaviour by modifying the microstructure and surface composition. The surface oxide film on the weldments is principally TiO2, together with some Ti, TiO, and Ti2O3. The surface Ti/Ni ratio of the weldments after PWHT is increased. The oxide film formed in Hanks’ solution is thicker on the weldments after PWHT. The pitting resistance of the weldments is increased by PWHT. The galvanic effect in the weldments is very small. The weldment with PWHT at 350 °C shows the best corrosion resistance among other heat-treated weldments in this study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, the stress-corrosion cracking (SCC) behaviour of laser-welded NiTi wires before and after post-weld heat-treatment (PWHT) was investigated. The samples were subjected to slow strain rate testing (SSRT) under tensile loading in Hanks’ solution at 37.5 °C (or 310.5 K) at a constant anodic potential (200 mVSCE). The current density of the samples during the SSRT was captured by a potentiostat, and used as an indicator to determine the susceptibility to SCC. Fractography was analyzed using scanning-electron microscopy (SEM). The experimental results showed that the laser-welded sample after PWHT was immune to the SCC as evidenced by the stable current density throughout the SSRT. This is attributed to the precipitation of fine and coherent nano-sized Ni4Ti3 precipitates in the welded regions (weld zone, WZ and heat-affected zone, HAZ) after PWHT, resulting in (i) enrichment of TiO2 content in the passive film and (ii) higher resistance against the local plastic deformation in the welded regions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Some retrieved CoCrMo hip implants have shown that abrasive wear is one of the possible wear mechanisms invoked within such joints. To date, little work has focused on the third body abrasion of CoCrMo and therefore there is a general lack of understanding of the effect of abrasive size and volume concentration on the tribo-corrosion performance of the CoCrMo alloys. The present work assessed the tribo-corrosion behaviour of cast CoCrMo (F-75) under various abrasion-corrosion conditions by using a modified microabrasion tester incorporating a three-electrode electrochemical cell. The effects of reduced abrasive size/hardness and volume concentration, as well as the role of proteins on the tribo-corrosion performance of the cast CoCrMo alloy were addressed. The correlation between electrochemical and mechanical processes for different abrasion-corrosion test conditions has been discussed in detail. Results show that the reduction in abrasive size and volume concentration can significantly affect the abrasion-corrosion wear mechanisms and the wear-induced corrosion response of the material. The finding of this study implies that the smaller/softer third body particles generated in vivo could also result in significant wear-induced corrosion and therefore potential metal ion release, which could be potentially detrimental to both the patient health and the life span of the implants. © 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pitting corrosion of stainless steels, one of the classical problems in materials science and electrochemistry, is generally believed to originate from the local dissolution in MnS inclusions, which are more or less ubiquitous in stainless steels. However, the initial location where MnS dissolution preferentially occurs is known to be unpredictable, which makes pitting corrosion a major concern. In this work we show, at an atomic scale, the initial site where MnS starts to dissolve in the presence of salt water. Using in situ ex-environment transmission electron microscopy (TEM), we found a number of nano-sized octahedral MnCr2O4 crystals (with a spinel structure and a space group of Fd (3) over barm) embedded in the MnS medium, generating local MnCr2O4/MnS nano-galvanic cells. The TEM experiments combined with first-principles calculations clarified that the nano-octahedron, enclosed by eight {1 1 1} facets with metal terminations, is "malignant", and this acts as the reactive site and catalyses the dissolution of MnS. This work not only uncovers the origin of MnS dissolution in stainless steels, but also presents an atomic-scale evolution in a material's failure which may occur in a wide range of engineering alloys and biomedical instruments serving in wet environments. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Titanium alloy exhibits an excellent combination of bio-compatibility, corrosion resistance, strength and toughness. The microstructure of an alloy influences the properties. The microstructures depend mainly on alloying elements, method of production, mechanical, and thermal treatments. The relationships between these variables and final properties of the alloy are complex, non-linear in nature, which is the biggest hurdle in developing proper correlations between them by conventional methods. So, we developed artificial neural networks (ANN) models for solving these complex phenomena in titanium alloys.

In the present work, ANN models were used for the analysis and prediction of the correlation between the process parameters, the alloying elements, microstructural features, beta transus temperature and mechanical properties in titanium alloys. Sensitivity analysis of trained neural network models were studied which resulted a better understanding of relationships between inputs and outputs. The model predictions and the analysis are well in agreement with the experimental results. The simulation results show that the average output-prediction error by models are less than 5% of the prediction range in more than 95% of the cases, which is quite acceptable for all metallurgical purposes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relatively high elastic modulus coupled with the presence of toxic vanadium (V) in Ti6Al4 V alloy has long been a concern in orthopaedic applications. To solve the problem, a variety of non-toxic and low modulus beta-titanium (beta-Ti) alloys have been developed. Among the beta-Ti alloy family, the quaternary Ti-Nb-Zr-Ta (TNZT) alloys have received the highest attention as a promising replacement for Ti6Al4 V due to their lower elastic modulus and outstanding long term stability against corrosion in biological environments. However, the inferior wear resistance of TNZT is still a problem that must be resolved before commercialising in the orthopaedic market. In this work, a newly-developed laser surface treatment technique was employed to improve the surface properties of Ti-35.3Nb-7.3Zr-5.7Ta alloy. The surface structure and composition of the laser-treated TNZT surface were examined by grazing incidence x-ray diffraction (GI-XRD) and x-ray photoelectron spectroscopy (XPS). The wear and corrosion resistance were evaluated by pin-on-plate sliding test and anodic polarisation test in Hanks’ solution. The experimental results were compared with the untreated (or base) TNZT material. The research findings showed that the laser surface treatment technique reported in this work can effectively improve the wear and corrosion resistance of TNZT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A indústria aeronáutica utiliza ligas de alumínio de alta resistência para o fabrico dos elementos estruturais dos aviões. As ligas usadas possuem excelentes propriedades mecânicas mas apresentam simultaneamente uma grande tendência para a corrosão. Por esta razão essas ligas necessitam de protecção anticorrosiva eficaz para poderem ser utilizadas com segurança. Até à data, os sistemas anticorrosivos mais eficazes para ligas de alumínio contêm crómio hexavalente na sua composição, sejam pré-tratamentos, camadas de conversão ou pigmentos anticorrosivos. O reconhecimento dos efeitos carcinogénicos do crómio hexavalente levou ao aparecimento de legislação banindo o uso desta forma de crómio pela indústria. Esta decisão trouxe a necessidade de encontrar alternativas ambientalmente inócuas mas igualmente eficazes. O principal objectivo do presente trabalho é o desenvolvimento de prétratamentos anticorrosivos activos para a liga de alumínio 2024, baseados em revestimentos híbridos produzidos pelo método sol-gel. Estes revestimentos deverão possuir boa aderência ao substrato metálico, boas propriedades barreira e capacidade anticorrosiva activa. A protecção activa pode ser alcançada através da incorporação de inibidores anticorrosivos no prétratamento. O objectivo foi atingido através de uma sucessão de etapas. Primeiro investigou-se em detalhe a corrosão localizada (por picada) da liga de alumínio 2024. Os resultados obtidos permitiram uma melhor compreensão da susceptibilidade desta liga a processos de corrosão localizada. Estudaram-se também vários possíveis inibidores de corrosão usando técnicas electroquímicas e microestruturais. Numa segunda etapa desenvolveram-se revestimentos anticorrosivos híbridos orgânico-inorgânico baseados no método sol-gel. Compostos derivados de titania e zirconia foram combinados com siloxanos organofuncionais a fim de obter-se boa aderência entre o revestimento e o substrato metálico assim como boas propriedades barreira. Testes industriais mostraram que estes novos revestimentos são compatíveis com os esquemas de pintura convencionais actualmente em uso. A estabilidade e o prazo de validade das formulações foram optimizados modificando a temperatura de armazenamento e a quantidade de água usada durante a síntese. As formulações sol-gel foram dopadas com os inibidores seleccionados durante a primeira etapa e as propriedades anticorrosivas passivas e activas dos revestimentos obtidos foram estudadas numa terceira etapa do trabalho. Os resultados comprovam a influência dos inibidores nas propriedades anticorrosivas dos revestimentos sol-gel. Em alguns casos a acção activa dos inibidores combinou-se com a protecção passiva dada pelo revestimento mas noutros casos terá ocorrido interacção química entre o inibidor e a matriz de sol-gel, de onde resultou a perda de propriedades protectoras do sistema combinado. Atendendo aos problemas provocados pela adição directa dos inibidores na formulação sol-gel procurou-se, numa quarta etapa, formas alternativas de incorporação. Na primeira, produziu-se uma camada de titania nanoporosa na superfície da liga metálica que serviu de reservatório para os inibidores. O revestimento sol-gel foi aplicado por cima da camada nanoporosa. Os inibidores armazenados nos poros actuam quando o substrato fica exposto ao ambiente agressivo. Numa segunda, os inibidores foram armazenados em nano-reservatórios de sílica ou em nanoargilas (halloysite), os quais foram revestidos por polielectrólitos montados camada a camada. A terceira alternativa consistiu no uso de nano-fios de molibdato de cério amorfo como inibidores anticorrosivos nanoparticulados. Os nano-reservatórios foram incorporados durante a síntese do sol-gel. Qualquer das abordagens permitiu eliminar o efeito negativo do inibidor sobre a estabilidade da matriz do sol-gel. Os revestimentos sol-gel desenvolvidos neste trabalho apresentaram protecção anticorrosiva activa e capacidade de auto-reparação. Os resultados obtidos mostraram o elevado potencial destes revestimentos para a protecção anticorrosiva da liga de alumínio 2024.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectif : il a été rapporté que l’utilisation d’agents prophylactiques fluorés pouvait favoriser la corrosion galvanique au sein des alliages de titane. L’objectif de la présente étude était d’évaluer l’effet d’un rince-bouche fluoré sur les propriétés mécaniques de fils en nickel-titane (NiTi) et de fils en cuivre-nickel-titane (CuNiTi) lorsque ces derniers sont couplés à des boîtiers de compositions différentes (boîtiers de marques Smartclip, Clarity, et Sprint). Matériels et Méthodes : 90 segments de fils en NiTi et 90 segments de fils en CuNiTi ont été chacun couplés à 2 boîtiers de chaque marque. Chaque assemblage fil-boîtiers a été par la suite incubé pendant 3 heures à 37°C, soit dans une solution de fluore neutre (Fluorinse™ 0,05% NaF), soit dans une solution de salive artificielle (solution contrôle). Suite à l’incubation, les échantillons étaient nettoyés avec de l’eau déshydrogénée, les fils séparés des boîtiers et montés sur un support pour subir un test de pliage en trois points en milieu humide (salive artificielle) à 37°C. Les modules d’élasticité ainsi que les limites conventionnelles d’élasticité en activation et en désactivation ont été mesurés et comparés. Des analyses de Variance (ANOVA) et des comparaisons post-hoc avec la correction de Bonferronni ont été utilisées pour comparer les groupes entre eux (α = 0,05). Résultats : L’utilisation d’un rince-bouche fluoré a produit une réduction du module d’élasticité et de la limite conventionnelle d’élasticité en activation et en désactivation pour les fils en NiTi ; cependant, cet effet a été modulé par le type de boîtier auquel le fil a été couplé. Les propriétés mécaniques de fils en CuNiTi n’ont pas été affectées par le fluor, ou par le type de boîtier utilisé. Conclusions : L’utilisation d’un rince-bouche fluoré modifie les propriétés mécaniques des fils en NiTi seulement. Cet effet est modulé par le boîtier auquel le fil en NiTi est couplé. A la différence des autres études publiées dans la littérature, nos résultats ne nous permettent pas de conclure que la modification des propriétés mécaniques des fils en NiTi entrainerait obligatoirement un allongement de la durée du traitement orthodontique. Mots clés : Fluor, fils nickel-titane, boîtiers orthodontiques, corrosion galvanique, propriétés mécaniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

All the exciting work on developing new and better alloys has led older alloys, such as AZ9l , being abandoned by researchers. lt is believed that the full potential of AZ9l in automotive design has not been realized. Whatever works have been carried out on AZ9lalloy to improve its mechanical properties are insufficient in terms of its potential usage in auto industries. Due to the fact that AZ91 offers high room temperature mechanical properties and good castability, still this alloy is a primary choice for the auto component manufactures. Small improvement in its creep properties will have a huge impact in the transportation industries. Hence, in the present work, “Influence of Si, Sb and Sr Additions on the Microstructure, Mechanical Properties and Corrosion Behavior of AZ91 Magnesium Alloy”, an attempt has been made to improve the creep properties of AZ9l alloy through minor alloying elemental additions and to understand its strengthening mechanisms. The effect of alloying additions on the ageing and tensile properties of AZ9l is also studied. In addition to that, role of various intermetallics formed due to the alloying additions on the corrosion properties of AZ9l alloy is investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: This study aimed to compare the cytotoxicity of base-metal dental alloys and to evaluate if the casting method could influence their cytotoxicity. Methods: Disks of base-metal dental alloys were cast by two methods: plasma, under argon atmosphere, injected by vacuum-pressure; and oxygen-gas flame, injected by centrifugation, except Ti-6Al-4V and commercially pure titanium (cpTi), cast only by plasma. SCC9 cells were cultured in culture media D-MEM/Ham`s F12 supplemented, at 37 degrees C in a humidified atmosphere of 5% carbon dioxide and 95% air, on the previously prepared disks. At subconfluence in wells without disks (control), cell number and viability were evaluated. Results: In plasma method, cpTi and Ti-6Al-4V were similar to control and presented higher number of cells than all other alloys, followed by Ni-Cr. In oxygen-gas name method, all alloys presented fewer cells than control. Ni-Cr presented more cells than any other alloy, followed by Co-Cr-Mo-W which presented more cells than Ni-Cr-Ti, Co-Cr-Mo, and Ni-Cr-Be. There were no significant differences between casting methods related to cell number. Cell viability was not affected by either chemical composition or casting methods. Conclusion: cpTi and Ti-6Al-4V were not cytotoxic while Ni-Cr-Be was the most cytotoxic among tested alloys. The casting method did not affect cytotoxicity of the alloys. (c) 2007 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The biocompatibility of commercially pure (cp) titanium stems from its chemical stability within an organism, due to a fine film of impermeable titanium oxide covering the metal surface, which guarantees its resistance to corrosion. Despite its biocompatible characteristic, this material does not promote the formation of a hydroxyapatite layer, therefore, many research groups have sought to alter the material`s surface, introducing modifications that might influence corrosion resistance. The electrochemical behavior of cp Ti, with hydroxyapatite coating and without hydroxyapatite coating, commonly used in implant materials, was investigated using an artificial saliva solution at 25 degrees C and pH=7.4. In the conditions of the study it was observed that the hydroxyapatite layer influences the properties of corrosion resistance. This study of the behavior of cp Ti with and without hydroxyapatite coating, in naturally aerated artificial saliva solution at 25 degrees C, was based on open circuit potential measurements and potentiodynamic polarization curves. At approximately 1x10(-6) A/cm(2) the potential for cp Ti with and without hydroxyapatite coating begins to increase at a faster rate, but at -74mV (SCE) for coated cp Ti and at 180mV (SCE) for uncoated cp Ti the increase in potential begins to slow. This behavior, characterized by a partial stabilization of current density, indicates that in those potential ranges a protective passive film is formed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The corrosion resistance of Ti and Ti-6Al-4V was investigated through electrochemical impedance spectroscopy, EIS, potentiodynamic polarisation curves and UV-Vis spectrophotometry. The tests were done in Hank solution at 25 degrees C and 37 degrees C. The EIS measurements were done at the open circuit potential at specific immersion times. An increase of the resistance as a function of the immersion time was observed, for Ti (at 25 degrees C and 37 degrees C), and for Ti-6Al-4V (at 25 degrees C), which was interpreted as the formation and growth of a passive film on the metallic surfaces. (C) 2009 Elsevier Ltd. All rights reserved.