924 resultados para COLLOIDAL SILVER NANOPARTICLES
Resumo:
Silver nanoparticles are widely used for many applications. In this study silver nanoparticles have been tested for their toxic effect on fibroblasts (NIH-3T3), on a human lung adenocarcinoma epithelial cell line (A-549), on PC-12-cells, a rat adrenal pheochromocytoma cell line, and on HEP-G2-cells, a human hepatocellular carcinoma cell line. The viability of the cells cultivated with different concentrations of silver was determined by the MTT assay, a photometric method to determine cell metabolism. Dose-response curves were extrapolated and IC50, total lethal concentration (TLC), and no observable adverse effect concentration (NOAEC) values were calculated for each cell line. As another approach, ECIS (electric-cell-substrate-impedance-sensing) an automated method to monitor cellular behavior in real-time was applied to observe cells cultivated with silver nanoparticles. To identify the type of cell death the membrane integrity was analyzed by measurements of the lactate dehydrogenase releases and by determination of the caspase 3/7 activity. To ensure that the cytotoxic effect of silver nanoparticles is not traced back to the presence of Ag+ ions in the suspension, an Ag+ salt (AgNO3) has been examined at the same concentration of Ag+ present in the silver nanoparticle suspension that is assuming that the Ag particles are completely available as Ag+ ions.
Resumo:
Purpose: To investigate the efficiency of silver nanoparticles synthesized by wet chemical method, and evaluate their antibacterial and anti-cancer activities. Methods: Wet chemical method was used to synthesize silver nanoparticles (AgNPs) from silver nitrate, trisodium citrate dehydrate (C6H5O7Na3.2H2O) and sodium borohydride (NaBH4) as reducing agent. The AgNPs and the reaction process were characterized by UV–visible spectrometry, zetasizer, transmission electron microscopy (TEM) and scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS). The antibacterial and cytotoxic effects of the synthesized nanoparticles were investigated by agar diffusion method and MTT assay respectively. Results: The silver nanoparticles formed were spherical in shape with mean size of 10.3 nm. The results showed good antibacterial properties, killing both Gram-positive and Gram-negative bacteria, and its aqueous suspension displayed cytotoxic activity against colon adenocarcinoma (HCT-116) cell line. Conclusion: The findings indicate that silver nanoparticles synthesized by wet chemical method demonstrate good cytotoxic activity in colon adenocarcinoma (HCT-116) cell lines and strong antibacterial activity against various strains of bacteria.
Resumo:
Purpose: To synthesize silver nanoparticles (AgNPs) of Arbutus andrachne leaf water extract (LE) and to evaluate the antimicrobial activity of both LE and AgNPs. Methods: The synthesized AgNPs were characterized using the following techniques: ultraviolet-visible spectroscopy (UV-vis), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), thermal gravimetric analysis (TGA), X-ray diffraction (XRD) analysis, and analysis of particle size (PS) and zeta potential (ZP). The antimicrobial activities of LE and NPs were assessed by Kirby-Bauer disc diffusion (DD) and broth microdilution (MD) methods according to the recommendations of the Clinical and Laboratory Standards Institute (CLSI). LE and AgNPs were examined against fresh cultures of four Gram-positive and five Gram-negative bacteria, and three yeast strains. Results: AgNPs were successfully synthesized and characterized using Arbutus andrachne LE. The AgNPs showed moderate antibacterial activity against Staphylococcus aureus ATCC 6538p, S. epidermidis ATCC 12228, Escherichia coli ATCC 29998, Klebsiella pnemoniae ATCC 13883 and Pseudomonas aeruginosa ATCC 27853, and also antifungal activity against Candida albicans ATCC 10239 and C. krusei ATCC 6258. Conclusions: Due to the potent activity of AgNPs against Gram-positive and Gram-negative bacteria, and yeast strains, it is suggested that AgNPs are potential broad spectrum antimicrobial agents.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Este estudo teve por objetivo avaliar a variação da massa e rugosidade de pastilhas de Ti-6Al-4V com e sem aplicação superficial de nanopartículas de prata coloidal (BSafe®) de dimensões 1,5 cm; 0,5 cm e 0,2 cm, submetidas à teste de escovação e imersão pelo período experimental de 10 anos. No teste de escovação, quinze espécimes de Ti-6Al-4V (TE), quinze com B-Safe® (BE) e quinze de PMMA (PE) como controle foram subdivididos em três condições de escovação: dentifrício comum (DC), dentifrício experimental (DE) e controle com água destilada (H2O) por 200 mil ciclos em máquina de escovação. Os resultados foram submetidos ao teste ANOVA a 2 critérios (condição de escovação e ciclos) e teste de Tukey (α=0,05) para comparações múltiplas. Foi observada variação de massa apenas quando a condição de escovação foi DC nos espécimes do grupo PE e TE. Houve diferença estatisticamente significante nos valores da variação de rugosidade no grupo TE e PE quando a condição de escovação foi DC; no grupo BE, houve diferença quando a condição foi DC e DE, porém em DE houve redução dos valores médios. No teste de imersão, objetivando analisar a ação dos dentifrícios sem o atrito das cerdas, seis espécimes de Ti-6Al-4V (TI) e seis com B-Safe® (BI) foram subdivididos em três condições de imersão: DC, DE e H2O pelo período de 244 horas. Os resultados foram submetidos ao teste t de student pareado. Não foi observada diferença estatística entre as variações de massa e rugosidade de nenhum dos corpos de prova após o teste. Complementar aos ensaios, foi realizado um protocolo de desinfecção com terapia fotodinâmica com azul de metileno pelo período de 4 semanas nos espécimes escovados. Após todos os testes, foi realizada espectrometria de energia dispersiva de raios-X (EDS) para caracterização dos elementos químicos presentes nos espécimes, onde não se observou variações. Os resultados sugerem que o DE é mais indicado para utilização com implantes, enquanto DC apresenta um poder abrasivo capaz de danificar a superfície do Ti-6Al- 4V. Não foi observado nenhum indício de corrosão em nenhum grupo testado.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Aim: The aim of this study was to assess the effect of different silver nanoparticles (SN) concentrations on the matrix composition and structure of Candida albicans and Candida glabrata biofilms. Methods and Results: Candida biofilms were developed in 6-well microtiter plates during 48 h. After, these biofilms were exposed to 13·5 or 54 μg SN ml-1 for 24 h. Then, extracellular matrices were extracted from biofilms and analysed chemically in terms of proteins, carbohydrates and DNA. To investigate the biofilm structure, scanning electron microscopy (SEM) and epifluorescence microscopy were used. SN interfered with the matrix composition of Candida biofilms tested in terms of protein, carbohydrate and DNA, except for the protein content of C. albicans biofilm. By SEM, Candida biofilms treated with SN revealed structural differences, when compared with the control groups. Further, SN showed a trend of agglomeration within the biofilms. Epifluorescence microscopy images suggest that SN induced damage on cell walls of the Candida isolates tested. Conclusions: In general, irrespective of concentration, SN affected the matrix composition and structure of Candida biofilms and these findings may be related to the mechanisms of biocide action of SN. Significance and Impact of the Study: This study reveals new insights about the behaviour of SN when in contact with Candida biofilms. SN may contribute to the development of therapies to prevent or control Candida infections. © 2012 The Society for Applied Microbiology.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fabricating supramolecular hydrogels with embedded metal nanostructures is important for the design of novel hybrid nanocomposite materials for diverse applications such as biosensing and chemosensing platforms, catalytic and antibacterial functional materials etc. Supramolecular self-assembly of bile acid-dipeptide conjugates has led to the formation of new supramolecular hydrogels. Gelation of these molecules depends strongly on the hydrophobic character of the bile acids. The possibility of in situ fabrication of Ag and Au NPs in these supramolecular hydrogels by incorporating Ag+ and Au3+ salts was investigated via photoreduction. Chemical reductions of Ag+ and Au3+ salts in the hydrogels were performed without adding any external stabilizing agents. In this report we have shown that the color, size and shape of silver nanoparticles formed by photoreduction depend on the amino acid residue of the side chain.
Resumo:
The interaction between HAuCl4 and DNA has enabled creation of DNA-templated gold nanoparticles without formation of large nanoparticles. It was found that spheral DNA-HAuCl4 hybrid of 8.7 nm in diameter, flower-like DNA-HAuCl4 hybrid, nanoparticles chains and nanoparticles network of DNA-HAuCl4 hybrid could be obtained by varying the reaction conditions, including DNA concentration and reaction temperature. The intermediate product was investigated by shortening the reaction time of DNA and HAuCl4, and the obtained nanoparticles preserved a small DNA segment, which indicated that the reaction between DNA and HAuCl4 had a process.
Resumo:
In this work,we report the application of novel, water-soluble fluorescent Ag clusters in fluorescent sensors for detecting cysteine, an important biological analyte. The fluorescence of poly(methacrylic acid) (PMAA)templated Ag clusters was found to be quenched effectively by cysteine, but not when the other alpha-amino acids were present. By virtue of the specific response, a new, simple, and sensitive fluorescent method for detecting cysteine has been developed based on Ag clusters. The present assay allows for the selective determination of cysteine in the range of 2.5 x 10(-8) to 6.0 x 10(-6) M with a detection limit of 20 nM at a signal-to-noise ratio of 3. Based on the absorption and fluorescence studies, we suggested that cysteine quenched the emission by the thiol-adsorption-accelerated oxidation of the emissive Ag clusters. The present study shows a promising step toward the application of silver clusters, a new class of attractive fluorescence probes.
Resumo:
In this article, surface enhanced Raman scattering (SERS) of different concentrations of brilliant green (13G) on Ag nanoparticles (AgNPs) has been investigated. The results indicate that only 10(-12) M BG can be detected on AgNPs while as low as 10(-11) M BG can be detected upon the activation of AgNPs by chloride ions. The additional improvement of the detection of BG mainly derives from the increase of the electromagnetic field around AgNPs and partially from the reorientation of BG on AgNPs induced by chloride ions, which was proved by the different spectra feature in the two systems. Adsorption of BG on AgNPs has also been demonstrated in applications of living cells as optical probes based on SERS, indicating that dye-AgNPs can probe the local environment in the living cells. The related cytotoxicity measurements demonstrated that BG-AgNPs produced little cytotoxicity to the cells, which shows great potential in biornedical applications of BG labeled-AgNPs for SERS nanosensors in cells as optical probes. Meanwhile, SERS spectra of BG on AgNPs in the presence chloride ions are expected to be used in living cells as more sensitive optical probes.
Resumo:
Novel nanocomposite films containing DNA-silver nanohybrids have been successfully fabricated by combined use of the layer-by-layer self-assembly technique and an in situ electrochemical reduction method with the DNA-Ag+ complex as one of the building blocks. UV-vis absorption spectroscopy was employed to monitor the buildup of the multilayer films, which suggested a progressive deposition with almost an equal amount of the DNA-Ag+ complex in each cycle. The following electrochemical reduction of silver resulted in the formation of metal nanoparticles in the film, which was evidenced by the evolution of the intense plasmon absorption band originating from silver. Scanning electron microscopy indicated that the particles formed in the multilayer films possessed good monodispersity and stability, thanks to the surrounding polymers. X-ray photoelectron spectroscopy further confirmed the presence of the main components (such as DNA and metallic silver) of the nanocomposite films. In addition, we show that the size of the metal nanoparticles and the optical property of the film could be readily tuned by manipulating the assembly conditions.
Resumo:
In this article, a novel technique for the fabrication of surface enhanced Raman scattering (SERS) active silver clusters on glassy carbon (GC) has been proposed. It was found that silver clusters could be formed on a layer of positively charged poly(diallyldimethylammonium) (PDDA) anchored to a carbon surface by 4-aminobenzoic acid when a drop containing silver nanoparticles was deposited on it. The characteristics of the obtained silver clusters have been investigated by atomic force microscopy (AFM), SERS and an SERS-based Raman mapping technique in the form of line scanning. The AFM image shows that the silver clusters consist of several silver nanoparticles and the size of the clusters is in the range 80-100 nm. The SERS spectra of different concentrations of rhodamine 6G (R6G) on the silver clusters were obtained and compared with those from a silver colloid. The apparent enhancement factor (AEF) was estimated to be as large as 3.1 x 10(4) relative to silver colloid, which might have resulted from the presence of 'hot-spots' at the silver clusters, providing a highly localized electromagnetic field for the large enhancement of the SERS spectra of R6G. The minimum electromagnetic enhancement factor (EEF) is estimated to be 5.4 x 10(7) by comparison with the SERS spectra of R6G on the silver clusters and on the bare GC surface.