991 resultados para CMOS analog integrated circuit


Relevância:

50.00% 50.00%

Publicador:

Resumo:

Wireless local-area networks (WLANs) have been deployed as office and home communications infrastructures worldwide. The diversification of the standards, such as IEEE 802.11 series demands the design of RF front-ends. Low power consumption is one of the most important design concerns in the application of those technologies. To maintain competitive hardware costs, CMOS has been used since it is the best solution for low cost and high integration processing, allowing analog circuits to be mixed with digital ones. In the receiver chain, the low noise amplifier (LNA) is one of the most critical blocks in a transceiver design. The sensitivity is mainly determined by the LNA noise figure and gain. It interfaces with the pre-select filter and the mixer. Furthermore, since it is the first gain stage, care must be taken to provide accurate input match, low-noise figure, good linearity and a sufficient gain over a wide band of operation. Several CMOS LNAs have been reported during the last decade, showing that the most research has been done at 802.11/b and GSM standards (900-2400MHz spectrum) and more recently at 802.11/a (5GHz band). One of the more significant disadvantages of 802.11/b is that the frequency band is crowded and subject to interference from other technologies, as is 2.4GHz cordless phones and Bluetooth. As the demand for radio-frequency integrated circuits, operating at higher frequency bands, increases, the IEEE 802.11/a standard becomes a very attractive option to wireless communication system developers. This paper presents the design and implementation of a low power, low noise amplifier aimed at IEEE 802.11a for WLAN applications. It was designed to be integrated with an active balun and mixer, representing the first step toward a fully integrated monolithic WLAN receiver. All the required circuits are integrated at the same die and are powered by 1.8V supply source. Preliminary experimental results (S-parameters) are shown and promise excellent results. The LNA circuit design details are illustrated in Section 2. Spectre simulation results focused at gain, noise figure (NF) and input/output matching are presented in Section 3. Finally, conclusions and comparison with other recently reported LNAs are made in Section 4, followed by future work.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

15th International Conference on Mixed Design of Integrated Circuits and Systems, pp. 177 – 180, Poznan, Polónia

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Thesis presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Electrical and Computer Engineering by the Universidade Nova de Lisboa,Faculdade de Ciências e Tecnologia

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Electrical and Computer Engineering of the Faculdade de Ciências e Tecnologia of Universidade Nova de Lisboa

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Dissertação apresentada para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In this work, the feasibility of the floating-gate technology in analog computing platforms in a scaled down general-purpose CMOS technology is considered. When the technology is scaled down the performance of analog circuits tends to get worse because the process parameters are optimized for digital transistors and the scaling involves the reduction of supply voltages. Generally, the challenge in analog circuit design is that all salient design metrics such as power, area, bandwidth and accuracy are interrelated. Furthermore, poor flexibility, i.e. lack of reconfigurability, the reuse of IP etc., can be considered the most severe weakness of analog hardware. On this account, digital calibration schemes are often required for improved performance or yield enhancement, whereas high flexibility/reconfigurability can not be easily achieved. Here, it is discussed whether it is possible to work around these obstacles by using floating-gate transistors (FGTs), and analyze problems associated with the practical implementation. FGT technology is attractive because it is electrically programmable and also features a charge-based built-in non-volatile memory. Apart from being ideal for canceling the circuit non-idealities due to process variations, the FGTs can also be used as computational or adaptive elements in analog circuits. The nominal gate oxide thickness in the deep sub-micron (DSM) processes is too thin to support robust charge retention and consequently the FGT becomes leaky. In principle, non-leaky FGTs can be implemented in a scaled down process without any special masks by using “double”-oxide transistors intended for providing devices that operate with higher supply voltages than general purpose devices. However, in practice the technology scaling poses several challenges which are addressed in this thesis. To provide a sufficiently wide-ranging survey, six prototype chips with varying complexity were implemented in four different DSM process nodes and investigated from this perspective. The focus is on non-leaky FGTs, but the presented autozeroing floating-gate amplifier (AFGA) demonstrates that leaky FGTs may also find a use. The simplest test structures contain only a few transistors, whereas the most complex experimental chip is an implementation of a spiking neural network (SNN) which comprises thousands of active and passive devices. More precisely, it is a fully connected (256 FGT synapses) two-layer spiking neural network (SNN), where the adaptive properties of FGT are taken advantage of. A compact realization of Spike Timing Dependent Plasticity (STDP) within the SNN is one of the key contributions of this thesis. Finally, the considerations in this thesis extend beyond CMOS to emerging nanodevices. To this end, one promising emerging nanoscale circuit element - memristor - is reviewed and its applicability for analog processing is considered. Furthermore, it is discussed how the FGT technology can be used to prototype computation paradigms compatible with these emerging two-terminal nanoscale devices in a mature and widely available CMOS technology.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

A CMOS memory-cell for dynamic storage of analog data and suitable for LVLP applications is proposed. Information is memorized as the gate-voltage of input-transistor of a gain-boosting triode-transconductor. The enhanced output-resistance improves accuracy on reading out the sampled currents. Additionally, a four-quadrant multiplication between the input to regulation-amplifier of the transconductor and the stored voltage is provided. Designing complies with a low-voltage 1.2μm N-well CMOS fabrication process. For a 1.3V-supply, CCELL=3.6pF and sampling interval is 0.25μA≤ ISAMPLE ≤ 0.75μA. The specified retention time is 1.28ms and corresponds to a charge-variation of 1% due to junction leakage @75°C. A range of MR simulations confirm circuit performance. Absolute read-out error is below O.40% while the four-quadrant multiplier nonlinearity, at full-scale is 8.2%. Maximum stand-by consumption is 3.6μW/cell.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

A novel multisampling time-domain architecture for CMOS imagers with synchronous readout and wide dynamic range is proposed. The architecture was implemented in a prototype of imager with 32x32 pixel array fabricated in AMS CMOS 0.35νm and was characterized for sensitivity and color response. The pixel is composed of an n+/psub photodiode, a comparator and a D flip-flop having 16% fill-factor and 30νmx26νm dimensions. The multisampling architecture requires only a 1 bit per pixel memory instead of 8 bits which is typical for time-domain active pixel architectures. The advantage is that the number of transistors in the pixel is low, saving area and providing higher fill-factor. The maximum frame rate is analyzed as a function of number of bits and array size. The analysis shows that it is possible to achieve high frame rates and operation in video mode with 10 bits. Also, we present analysis for the impact of comparator offset voltage in the fixed pattern noise. Copyright 2007 ACM.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The last decades have seen an unrivaled growth and diffusion of mobile telecommunications. Several standards have been developed to this purposes, from GSM mobile phone communications to WLAN IEEE 802.11, providing different services for the the transmission of signals ranging from voice to high data rate digital communications and Digital Video Broadcasting (DVB). In this wide research and market field, this thesis focuses on Ultra Wideband (UWB) communications, an emerging technology for providing very high data rate transmissions over very short distances. In particular the presented research deals with the circuit design of enabling blocks for MB-OFDM UWB CMOS single-chip transceivers, namely the frequency synthesizer and the transmission mixer and power amplifier. First we discuss three different models for the simulation of chargepump phase-locked loops, namely the continuous time s-domain and discrete time z-domain approximations and the exact semi-analytical time-domain model. The limitations of the two approximated models are analyzed in terms of error in the computed settling time as a function of loop parameters, deriving practical conditions under which the different models are reliable for fast settling PLLs up to fourth order. Besides, a phase noise analysis method based upon the time-domain model is introduced and compared to the results obtained by means of the s-domain model. We compare the three models over the simulation of a fast switching PLL to be integrated in a frequency synthesizer for WiMedia MB-OFDM UWB systems. In the second part, the theoretical analysis is applied to the design of a 60mW 3.4 to 9.2GHz 12 Bands frequency synthesizer for MB-OFDM UWB based on two wide-band PLLs. The design is presented and discussed up to layout level. A test chip has been implemented in TSMC CMOS 90nm technology, measured data is provided. The functionality of the circuit is proved and specifications are met with state-of-the-art area occupation and power consumption. The last part of the thesis deals with the design of a transmission mixer and a power amplifier for MB-OFDM UWB band group 1. The design has been carried on up to layout level in ST Microlectronics 65nm CMOS technology. Main characteristics of the systems are the wideband behavior (1.6 GHz of bandwidth) and the constant behavior over process parameters, temperature and supply voltage thanks to the design of dedicated adaptive biasing circuits.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

FinFETs are recognized as promising candidates for the CMOS nanometer era. In this paper the most recent results for cryogenic operation of FinFETs will be demonstrated with special emphasis on analog applications. Threshold voltage, subthreshold slope and carrier mobility will be studied. Also some important figures of merit for analog circuit operation as for readout electronics, such as transconductance, output conductance and intrinsic voltage gain will be covered. It is demonstrated that the threshold voltage of undoped narrow FinFETs is less temperature-dependent than for a planar single-gate device with similar doping concentration. The temperature reduction improves the transconductance over drain current ratio in any operational region. On the other hand, the output conductance is degraded when the temperature is reduced. The combination of these effects shows that the intrinsic gain of a L = 90 nm FinFET is degraded by 2 dB when the temperature reduces from 300 K to 100 K. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A voltage limiter circuit for indoor light energy harvesting applications is presented. This circuit is a part of a bigger system, whose function is to harvest indoor light energy, process it and store it, so that it can be used at a later time. This processing consists on maximum power point tracking (MPPT) and stepping-up, of the voltage from the photovoltaic (PV) harvester cell. The circuit here described, ensures that even under strong illumination, the generated voltage will not exceed the limit allowed by the technology, avoiding the degradation, or destruction, of the integrated die. A prototype of the limiter circuit was designed in a 130 nm CMOS technology. The layout of the circuit has a total area of 23414 mu m(2). Simulation results, using Spectre, are presented.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dissertação apresentada para obtenção do Grau de Doutor em Engenharia Electrotécnica e de Computadores pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dissertação apresentada na faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Second International Workshop on Analog and Mixed Signal Integrated Circuits for Space Applications (AMICSA 2008), Sintra, Portugal, Setembro de 2008