969 resultados para C-elegans


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Measuring forces applied by multi-cellular organisms is valuable in investigating biomechanics of their locomotion. Several technologies have been developed to measure such forces, for example, strain gauges, micro-machined sensors, and calibrated cantilevers. We introduce an innovative combination of techniques as a high throughput screening tool to assess forces applied by multiple genetic model organisms. First, we fabricated colored Polydimethylsiloxane (PDMS) micropillars where the color enhances contrast making it easier to detect and track pillar displacement driven by the organism. Second, we developed a semiautomated graphical user interface to analyze the images for pillar displacement, thus reducing the analysis time for each animal to minutes. The addition of color reduced the Young's modulus of PDMS. Therefore, the dye-PDMS composite was characterized using Yeoh's hyperelastic model and the pillars were calibrated using a silicon based force sensor. We used our device to measure forces exerted by wild type and mutant Caenorhabditis elegans moving on an agarose surface. Wild type C. elegans exert an average force of similar to 1 mu N on an individual pillar and a total average force of similar to 7.68 mu N. We show that the middle of C. elegans exerts more force than its extremities. We find that C. elegans mutants with defective body wall muscles apply significantly lower force on individual pillars, while mutants defective in sensing externally applied mechanical forces still apply the same average force per pillar compared to wild type animals. Average forces applied per pillar are independent of the length, diameter, or cuticle stiffness of the animal. We also used the device to measure, for the first time, forces applied by Drosophila melanogaster larvae. Peristaltic waves occurred at 0.4Hz applying an average force of similar to 1.58 mu N on a single pillar. Our colored microfluidic device along with its displacement tracking software allows us to measure forces applied by multiple model organisms that crawl or slither to travel through their environment. (C) 2015 AIP Publishing LLC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Acetyltransferases and deacetylases catalyze the addition and removal, respectively, of acetyl groups to the epsilon-amino group of protein lysine residues. This modification can affect the function of a protein through several means, including the recruitment of specific binding partners called acetyl-lysine readers. Acetyltransferases, deacetylases, and acetyl-lysine readers have emerged as crucial regulators of biological processes and prominent targets for the treatment of human disease. This work describes a combination of structural, biochemical, biophysical, cell-biological, and organismal studies undertaken on a set of proteins that cumulatively include all steps of the acetylation process: the acetyltransferase MEC-17, the deacetylase SIRT1, and the acetyl-lysine reader DPF2. Tubulin acetylation by MEC-17 is associated with stable, long-lived microtubule structures. We determined the crystal structure of the catalytic domain of human MEC-17 in complex with the cofactor acetyl-CoA. The structure in combination with an extensive enzymatic analysis of MEC-17 mutants identified residues for cofactor and substrate recognition and activity. A large, evolutionarily conserved hydrophobic surface patch distal to the active site was shown to be necessary for catalysis, suggesting that specificity is achieved by interactions with the alpha-tubulin substrate that extend outside of the modified surface loop. Experiments in C. elegans showed that while MEC-17 is required for touch sensitivity, MEC-17 enzymatic activity is dispensible for this behavior. SIRT1 deacetylates a wide range of substrates, including p53, NF-kappaB, FOXO transcription factors, and PGC-1-alpha, with roles in cellular processes ranging from energy metabolism to cell survival. SIRT1 activity is uniquely controlled by a C-terminal regulatory segment (CTR). Here we present crystal structures of the catalytic domain of human SIRT1 in complex with the CTR in an apo form and in complex with a cofactor and a pseudo-substrate peptide. The catalytic domain adopts the canonical sirtuin fold. The CTR forms a beta-hairpin structure that complements the beta-sheet of the NAD^+-binding domain, covering an essentially invariant, hydrophobic surface. A comparison of the apo and cofactor bound structures revealed conformational changes throughout catalysis, including a rotation of a smaller subdomain with respect to the larger NAD^+-binding subdomain. A biochemical analysis identified key residues in the active site, an inhibitory role for the CTR, and distinct structural features of the CTR that mediate binding and inhibition of the SIRT1 catalytic domain. DPF2 represses myeloid differentiation in acute myelogenous leukemia. Finally, we solved the crystal structure of the tandem PHD domain of human DPF2. We showed that DPF2 preferentially binds H3 tail peptides acetylated at Lys14, and binds H4 tail peptides with no preference for acetylation state. Through a structural and mutational analysis we identify the molecular basis of histone recognition. We propose a model for the role of DPF2 in AML and identify the DPF2 tandem PHD finger domain as a promising novel target for anti-leukemia therapeutics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In plants and less-advanced animal species, such as C.elegans, introduction of exogenous double-stranded RNA (dsRNA) into cells would trigger degradation of the mRNA with homologous sequence and interfere with the endogenous gene expression. It might represent an ancient anti-virus response which could prevent the mutation in the genome that was caused by virus infection or mobile DNA elements insertion. This phenomenon was named RNA interference, or RNAi. In this study, RNAi was used to investigate the function of basonuclin gene during oogenesis. Microinjection of dsRNA directed towards basonuclin into mouse germinal-vesicle-intact (GV) oocytes brought down the abundance of the cognate mRNA effectively in a time- and concentration-dependent manner. This reduction effect was sequence-specific and showed no negative effect on other non-homologous gene expression in oocytes, which indicated that dsRNA can recognize and cause the degradation of the transcriptional products of endogenous basonuclin gene in a sequence-specific manner. Immunofluorescence results showed that RNAi could reduce the concentration of basonuclin protein to some extent, but the effect was less efficient than the dsRNA targeting towards tPA and cMos which was also expressed in oocytes. This result might be due to the long half life of basonuclin protein in oocytes and the short reaction time which was posed by the limited life span of GV oocytes cultured in vitro. In summary, dsRNA could inhibit the expression of the cognate gene in oocytes at both mRNA and protein levels. The effect was similar to Knock-out technique which was based on homologous recombination. Furthermore, hairpin-style dsRNA targeting basonuclin gene could be produced by transcription from a recombinant plasmid and worked efficiently to deplete the cognate mRNA in oocytes. This finding offered a new way to study the function of basonuclin in the early stage of oogenesis by infection of primordial oocytes with the plasmid expressing hairpin-style basonuclin dsRNA.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The sex-determining gene Mab-3 of C. elegans and the doublesex gene of Drosophila each contain a common DM domain and share a similar role. Human doublesex-related gene DMRT1 also encodes a conserved DM-related DNA-binding domain. We present here the amplification of a broad range of DM domain sequences from three fish species using degenerate PCR. Our results reveal unexpected complexity of the DM domain gene family in vertebrates. (C) 2002 Wiley-Liss, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We thank John Stubblefield for editing, Junling Li for the assistance in the Western blot analysis. This research was supported by a training grant from National Institutes of Health (#T32 AR07592) and a research grant MB-8713-08 from United States - Israel Binational Agriculture Research and Development Fund.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

MAPKKK dual leucine zipper-bearing kinases (DLKs) are regulators of synaptic development and axon regeneration. The mechanisms underlying their activation are not fully understood. Here, we show that C. elegans DLK-1 is activated by a Ca(2+)-dependent switch from inactive heteromeric to active homomeric protein complexes. We identify a DLK-1 isoform, DLK-1S, that shares identical kinase and leucine zipper domains with the previously described long isoform DLK-1L but acts to inhibit DLK-1 function by binding to DLK-1L. The switch between homo- or heteromeric DLK-1 complexes is influenced by Ca(2+) concentration. A conserved hexapeptide in the DLK-1L C terminus is essential for DLK-1 activity and is required for Ca(2+) regulation. The mammalian DLK-1 homolog MAP3K13 contains an identical C-terminal hexapeptide and can functionally complement dlk-1 mutants, suggesting that the DLK activation mechanism is conserved. The DLK activation mechanism is ideally suited for rapid and spatially controlled signal transduction in response to axonal injury and synaptic activity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Both the gain and the loss of flexibility in the development of phenotypes have led to an increased diversity of physical forms in nematode worms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study reports the identification of nematode neuropeptide-like protein (nlp) sequelogs from the GenBank expressed sequence tag (EST) database, using BLAST (Basic Local Alignment Search Tool) search methodology. Search strings derived from peptides encoded by the 45 known Caenorhabatitis elegans nlp genes were used to identify more than 1000 ESTs encoding a total of 26 multi-species nlp sequelogs. The remaining 18 nlps (nlp-4, -16, -24 through -36, -39, -41 and -45) were identified only in C elegans, while the sole EST representative of nlp-23 was from Caenorhabditis remanei. Several ESTs encoding putative antibacterial peptides similar to those encoded by the C elegans genes nlp-24-33 were observed in several parasite species. A novel gene (nlp-46) was identified, encoding a single, amidated dodecapeptide (NIA[I/T]GR[G/A]DG[F/L]RPG) in eight species. Secretory signal peptides were identified in at least one species representing each nlp sequelog, confirming that all 46 nematode nlp genes encode secretory peptides. A random sub-set of C elegans NLPs was tested physiologically in Ascaris suum ovijector and body wall muscle bioassays. None of the peptides tested were able to modulate ovijector activity, while only three displayed measurable myoactivity on somatic body wall muscle. AFAAGWNRamide (from nlp-23) and AVNPFLDSIamide (nlp-3) both produced a relaxation of body wall muscle, while AIPFNGGMYamide (nlp-10) induced a transient contraction. Numerical analyses of nip-encoding ESTs demonstrate that nlp-3, -13, -14, -15 and -18 are amongst the most highly represented transcripts in the dataset. Using available bioinformatics resources, this study delineates the nlp complement of phylum Nematoda, providing a rich source of neuropeptide ligands for deorphanisation of nematode neuropeptide receptors. (C) 2008 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

While RNA interference (RNAi) has been deployed to facilitate gene function studies in diverse helminths, parasitic nematodes appear variably susceptible. To test if this is due to inter-species differences in RNAi effector complements, we performed a primary sequence similarity survey for orthologs of 77 Caenorhabditis elegans RNAi pathway proteins in 13 nematode species for which genomic or transcriptomic datasets were available, with all outputs subjected to domain-structure verification. Our dataset spanned transcriptomes of Ancylostoma caninum and Oesophagostomum dentatum, and genomes of Trichinella spiralis, Ascaris suum, Brugia malayi, Haemonchus contortus, Meloidogyne hapla, Meloidogyne incognita and Pristionchus pacificus, as well as the Caenorhabditis species C. brenneri, C. briggsae, C. japonica and C. remanei, and revealed that: (i) Most of the C. elegans proteins responsible for uptake and spread of exogenously applied double stranded (ds)RNA are absent from parasitic species, including RNAi-competent plant-nematodes; (ii) The Argonautes (AGOs) responsible for gene expression regulation in C. elegans are broadly conserved, unlike those recruited during the induction of RNAi by exogenous dsRNA; (iii) Secondary Argonautes (SAGOs) are poorly conserved, and the nuclear AGO NRDE-3 was not identified in any parasite; (iv) All five Caenorhabditis spp. possess an expanded RNAi effector repertoire relative to the parasitic nematodes, consistent with the propensity for gene loss in nematode parasites; (v) In spite of the quantitative differences in RNAi effector complements across nematode species, all displayed qualitatively similar coverage of functional protein groups. In summary, we could not identify RNAi effector deficiencies that associate with reduced susceptibility in parasitic nematodes. Indeed, similarities in the RNAi effector complements of RNAi refractory and competent nematode parasites support the broad applicability of this research genetic tool in nematodes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

FMRFamide-like peptides (FLPs) are a diverse group of neuropeptides that are expressed abundantly in nematodes. They exert potent physiological effects on locomotory, feeding and reproductive musculature and also act as neuromodulators. However, little is known about the specific expression patterns and functions of individual peptides. The current study employed rapid amplification of cDNA ends-polymerase chain reaction (RACE-PCR) to characterize flp genes from infective juveniles of the root knot nematodes, Meloidogyne incognita and Meloidogyne minor. The peptides identified from these transcripts are sequelogs of FLPs from the free-living nematode, Caenorhabditis elegans; the genes have therefore been designated as Mi-flp-1, Mi-flp-7, Mi-flp-12, Mm-flp-12 and Mi-flp-14. Mi-flp-1 encodes five FLPs with the common C-terminal moiety, NFLRFamide. Mi-flp-7 encodes two copies of APLDRSALVRFamide and APLDRAAMVRFamide and one copy of APFDRSSMVRFamide. Mi-flp-12 and Mm-flp-12 encode the novel peptide KNNKFEFIRFamide (a longer version of RNKFEFIRFamide found in C. elegans). Mi-flp-14 encodes a single copy of KHEYLRFamide (commonly known as AF2 and regarded as the most abundant nematode FLP), and a single copy of the novel peptide KHEFVRFamide. These FLPs share a high degree of conservation between Meloidogyne species and nematodes from other clades, including those of humans and animals, perhaps suggesting a common neurophysiological role which may be exploited by novel drugs. FLP immunoreactivity was observed for the first time in Meloidogyne, in the circumpharyngeal nerve ring, pharyngeal nerves and ventral nerve cord. Additionally, in situ hybridization revealed Mi-flp-12 expression in an RIR-like neuron and Mi-flp-14 expression in SMB-like neurons, respectively. These localizations imply physiological roles for FLP-12 and FLP-14 peptides, including locomotion and sensory perception.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nematodes include both free-living species such as Caenorhabditis elegans and major parasites of humans, livestock and plants. The apparent simplicity and uniformity of their nervous system belies a rich diversity of putative signalling molecules,particularly neuropeptides. This new appreciation stems largely from the genome-sequencing project with C. elegans, which is due to be completed by the end of 1998. The project has provided additional insights into other aspects of nematode neurobiology, as have studies on the mechanism of action of anthelmintics. Here, progress on the identification, localization, synthesis and physiological actions of transmitters identified in nematodes is explored.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In nematodes, FMRFamide-related peptides (FaRPs) have been structurally characterised from the parasite, Ascaris suum, and from two free-living species, Panagrellus redivivus and Caenorhabditis elegans. While both FaRPs isolated from P. redivivus (PF1 and PF2) have been identified in C. elegans the two heptapeptides isolated from A. suum (AF1 and AF2) have until recently been considered unique to this parasitic species. We have recently isolated AF2 from P. redivivus and, during this study, an additional novel heptapeptide amide, Lys-Ser-Ala-Tyr-Met-Arg-Phe amide (KSAYMRFamide), was structurally characterised. A synthetic replicate of this peptide induced a rapid concentration-dependent muscle tension increase in an isolated A. suum somatic muscle preparation, with a threshold of approximately 0.1 mu M. These data suggest that the complement of FaRPs in parasitic and free-living nematodes may not be as radically different as preliminary studies would suggest, and that the absence of AF1, AF2 and KSAYMRFamide on the C. elegans FMRFamide-related peptide gene (flp-1) may imply the presence of at least two different FaRP genes in nematodes. (C) 1994 Academic Press, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The pine wood nematode Bursaphelenchus xylophilus reproduces bisexually: a haploid sperm fertilizes a haploid oocyte, and the two pronuclei rearrange, move together, fuse, and begin diploid development. Early embryonic events taking place in the B. xylophilus embryo are similar to those of Caenorhabditis elegans, although the anterior-posterior axis appeares to be determined oppositely to that observed for C. elegans. Thai is, in the B. xylophilus embryo, the male pronucleus emerges at the future anterior end, whereas the female pronucleus appeares laterally. To understand the evolution of nematode developmental systems, we cloned the full length of Bx-tbb-1 (beta tubulin) from B. xylophilus cDNA and attempted to apply reverse genetics analysis to B. xylophilus. Several lengths of double stranded RNA (dsRNA) for the Bx-tbb-1 gene were synthesized by in vitro transcription, and both B. xylophilus and C. elegans were soaked in dsRNA for RNAi. Both nematodes could suck up the dsRNA, and we could detect the abnormal phenotypes caused by Bx-tbb-1 dsRNA in C. elegans, but not in B. xylophilus. We suspect that systemic RNAi might be suppressed in B. xylophilus and are attempting to establish other methods for functionally analyzing B. xylophilus genes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tese de doutoramento, Ciências Biomédicas, Universidade do Algarve, Departamento de Ciências Biomédicas e Medicina, 2014

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Transcriptional coregulators control the activity of many transcription factors and are thought to have wide-ranging effects on gene expression patterns. We show here that muscle-specific loss of nuclear receptor corepressor 1 (NCoR1) in mice leads to enhanced exercise endurance due to an increase of both muscle mass and of mitochondrial number and activity. The activation of selected transcription factors that control muscle function, such as MEF2, PPARβ/δ, and ERRs, underpins these phenotypic alterations. NCoR1 levels are decreased in conditions that require fat oxidation, resetting transcriptional programs to boost oxidative metabolism. Knockdown of gei-8, the sole C. elegans NCoR homolog, also robustly increased muscle mitochondria and respiration, suggesting conservation of NCoR1 function. Collectively, our data suggest that NCoR1 plays an adaptive role in muscle physiology and that interference with NCoR1 action could be used to improve muscle function.