853 resultados para Business Process Management, BPM life cycle, quality, root cause analysis
Resumo:
Purpose: The purpose of this paper is to clarify how end-users’ tacit knowledge can be captured and integrated in an overall business process management (BPM) approach. Current approaches to support stakeholders’ collaboration in the modelling of business processes envision an egalitarian environment where stakeholders interact in the same context, using the same languages and sharing the same perspectives on the business process. Therefore, such stakeholders have to collaborate in the context of process modelling using a language that some of them do not master, and have to integrate their various perspectives. Design/methodology/approach: The paper applies the SECI knowledge management process to analyse the problems of traditional top-down BPM approaches and BPM collaborative modelling tools. Besides, the SECI model is also applied to Wikipedia, a successful Web 2.0-based knowledge management environment, to identify how tacit knowledge is captured in a bottom-up approach. Findings – The paper identifies a set of requirements for a hybrid BPM approach, both top-down and bottom-up, and describes a new BPM method based on a stepwise discovery of knowledge. Originality/value: This new approach, Processpedia, enhances collaborative modelling among stakeholders without enforcing egalitarianism. In Processpedia tacit knowledge is captured and standardised into the organisation’s business processes by fostering an ecological participation of all the stakeholders and capitalising on stakeholders’ distinctive characteristics.
Resumo:
Nowadays, Workflow Management Systems (WfMSs) and, more generally, Process Management Systems (PMPs) are process-aware Information Systems (PAISs), are widely used to support many human organizational activities, ranging from well-understood, relatively stable and structures processes (supply chain management, postal delivery tracking, etc.) to processes that are more complicated, less structured and may exhibit a high degree of variation (health-care, emergency management, etc.). Every aspect of a business process involves a certain amount of knowledge which may be complex depending on the domain of interest. The adequate representation of this knowledge is determined by the modeling language used. Some processes behave in a way that is well understood, predictable and repeatable: the tasks are clearly delineated and the control flow is straightforward. Recent discussions, however, illustrate the increasing demand for solutions for knowledge-intensive processes, where these characteristics are less applicable. The actors involved in the conduct of a knowledge-intensive process have to deal with a high degree of uncertainty. Tasks may be hard to perform and the order in which they need to be performed may be highly variable. Modeling knowledge-intensive processes can be complex as it may be hard to capture at design-time what knowledge is available at run-time. In realistic environments, for example, actors lack important knowledge at execution time or this knowledge can become obsolete as the process progresses. Even if each actor (at some point) has perfect knowledge of the world, it may not be certain of its beliefs at later points in time, since tasks by other actors may change the world without those changes being perceived. Typically, a knowledge-intensive process cannot be adequately modeled by classical, state of the art process/workflow modeling approaches. In some respect there is a lack of maturity when it comes to capturing the semantic aspects involved, both in terms of reasoning about them. The main focus of the 1st International Workshop on Knowledge-intensive Business processes (KiBP 2012) was investigating how techniques from different fields, such as Artificial Intelligence (AI), Knowledge Representation (KR), Business Process Management (BPM), Service Oriented Computing (SOC), etc., can be combined with the aim of improving the modeling and the enactment phases of a knowledge-intensive process. The 1st International Workshop on Knowledge-intensive Business process (KiBP 2012) was held as part of the program of the 2012 Knowledge Representation & Reasoning International Conference (KR 2012) in Rome, Italy, in June 2012. The workshop was hosted by the Dipartimento di Ingegneria Informatica, Automatica e Gestionale Antonio Ruberti of Sapienza Universita di Roma, with financial support of the University, through grant 2010-C26A107CN9 TESTMED, and the EU Commission through the projects FP7-25888 Greener Buildings and FP7-257899 Smart Vortex. This volume contains the 5 papers accepted and presented at the workshop. Each paper was reviewed by three members of the internationally renowned Program Committee. In addition, a further paper was invted for inclusion in the workshop proceedings and for presentation at the workshop. There were two keynote talks, one by Marlon Dumas (Institute of Computer Science, University of Tartu, Estonia) on "Integrated Data and Process Management: Finally?" and the other by Yves Lesperance (Department of Computer Science and Engineering, York University, Canada) on "A Logic-Based Approach to Business Processes Customization" completed the scientific program. We would like to thank all the Program Committee members for the valuable work in selecting the papers, Andrea Marrella for his valuable work as publication and publicity chair of the workshop, and Carola Aiello and the consulting agency Consulta Umbria for the organization of this successful event.
Resumo:
Complexity is a major concern which is aimed to be overcome by people through modeling. One way of reducing complexity is separation of concerns, e.g. separation of business process from applications. One sort of concerns are cross-cutting concerns i.e. concerns which are scattered and tangled through one of several models. In business process management, examples of such concerns are security and privacy policies. To deal with these cross-cutting concerns, the aspect orientated approach was introduced in the software development area and recently also in the business process management area. The work presented in this paper elaborates on aspect oriented process modelling. It extends earlier work by defining a mechanism for capturing multiple concerns and specifying a precedence order according to which they should be handled in a process. A formal syntax of the notation is presented precisely capturing the extended concepts and mechanisms. Finally, the relevant of the approach is demonstrated through a case study.
Resumo:
Organisations are constantly seeking efficiency improvements for their business processes in terms of time and cost. Management accounting enables reporting of detailed cost of operations for decision making purpose, although significant effort is required to gather accurate operational data. Business process management is concerned with systematically documenting, managing, automating, and optimising processes. Process mining gives valuable insight into processes through analysis of events recorded by an IT system in the form of an event log with the focus on efficient utilisation of time and resources, although its primary focus is not on cost implications. In this paper, we propose a framework to support management accounting decisions on cost control by automatically incorporating cost data with historical data from event logs for monitoring, predicting and reporting process-related costs. We also illustrate how accurate, relevant and timely management accounting style cost reports can be produced on demand by extending open-source process mining framework ProM.
Resumo:
Organisations are constantly seeking efficiency gains for their business processes in terms of time and cost. Management accounting enables detailed cost reporting of business operations for decision making purposes, although significant effort is required to gather accurate operational data. Process mining, on the other hand, may provide valuable insight into processes through analysis of events recorded in logs by IT systems, but its primary focus is not on cost implications. In this paper, a framework is proposed which aims to exploit the strengths of both fields in order to better support management decisions on cost control. This is achieved by automatically merging cost data with historical data from event logs for the purposes of monitoring, predicting, and reporting process-related costs. The on-demand generation of accurate, relevant and timely cost reports, in a style akin to reports in the area of management accounting, will also be illustrated. This is achieved through extending the open-source process mining framework ProM.
Resumo:
It is well-known that the use of off-site manufacture (OSM) techniques can assist in timely completion of a construction project though the utilisation of such techniques may have other disadvantages. Currently, OSM uptake within the Australian construction industry is limited. To successfully incorporate OSM practices within a construction project, it is crucial to understand the impact of OSM adoption on the processes used during a construction project. This paper presents how a systematic process-oriented approach may be able to support OSM utilisation within a construction project. Process modelling, analysis and automation techniques which are well-known within the Business Process Management (BPM) discipline have been applied to develop a collection of construction process models that represent the end-to-end generic construction value chain. The construction value chain enables researchers to identify key activities, resources, data, and stakeholders involved in construction processes in each defined construction phase. The collection of construction process models is then used as a basis for identification of potential OSM intervention points in collaboration with domain experts from the Australian construction industry. This ensures that the resulting changes reflect the needs of various stakeholders within the construction industry and have relevance in practice. Based on the input from the domain experts, these process models are further refined and operational requirements are taken into account to develop a prototype process automation (workflow) system that can support and coordinate OSM-related process activities. The resulting workflow system also has the potential to integrate with other IT solutions used within the construction industry (e.g., BIM, Acconex). As such, the paper illustrates the role that process-oriented thinking can play in assisting OSM adoption within the industry.
Resumo:
As business processes, services and relationships, are now recognized as key organizational assets, the demand for the so-called boundaryspanning roles and process-aware professionals is continuing to grow. The world-wide demand for these roles will continue to increase, fueled by the unprecedented interest in Business Process Management (BPM) and the other emerging cross-functional disciplines. This, in turn, creates new opportunities, as well as some unforeseeable challenges for BPM education, both in university and industry. This paper reports on an analysis of the current BPM offerings of Australian universities. It presents a critical review of what is taught and how it is taught, and identifies a series of gaps and concerns. Explanations and recommendations are proposed and a call made for BPM educators worldwide, for urgent action.
Improving the performance of nutrition screening through a series of quality improvement initiatives
Resumo:
Background Nutrition screening identifies patients at risk of malnutrition to facilitate early nutritional intervention. Studies have reported incompletion and error rates of 30-90% for a range of commonly used screening tools. This study aims to investigate the incompletion and error rates of 3-Minute Nutrition Screening (3-MinNS) and the effect of quality improvement initiatives in improving the overall performance of the screening tool and the referral process for at risk patients. Methods Annual audits were carried out from 2008-2013 on 4467 patients. Value Stream Mapping, Plan-Do-Check-Act cycle and Root Cause Analysis were used in this study to identify gaps and determine the best intervention. The intervention included 1) implementing a nutrition screening protocol, 2) nutrition screening training, 3) nurse empowerment for online dietetics referral of at-risk cases, 4) closed-loop feedback system and 5) removing a component of 3-MinNS that caused the most error without compromising its sensitivity and specificity. Results Nutrition screening error rates were 33% and 31%, with 5% and 8% blank or missing forms, in 2008 and 2009 respectively. For patients at risk of malnutrition, referral to dietetics took up to 7.5 days, with 10% not referred at all. After intervention, the latter decreased to 7% (2010), 4% (2011) and 3% (2012 and 2013), and the mean turnaround time from screening to referral was reduced significantly from 4.3 ± 1.8 days to 0.3 ± 0.4 days (p < 0.001). Error rates were reduced to 25% (2010), 15% (2011), 7% (2012) and 5% (2013) and percentage of blank or missing forms reduced to and remained at 1%. Conclusion Quality improvement initiatives are effective in reducing the incompletion and error rates of nutrition screening, and led to sustainable improvements in the referral process of patients at nutritional risk.
Resumo:
Nowadays, process management systems (PMSs) are widely used in many business scenarios, e.g. by government agencies, by insurance companies, and by banks. Despite this widespread usage, the typical application of such systems is predominantly in the context of static scenarios, instead of pervasive and highly dynamic scenarios. Nevertheless, pervasive and highly dynamic scenarios could also benefit from the use of PMSs.
Resumo:
In order to execute, study, or improve operating procedures, companies document them as business process models. Often, business process analysts capture every single exception handling or alternative task handling scenario within a model. Such a tendency results in large process specifications. The core process logic becomes hidden in numerous modeling constructs. To fulfill different tasks, companies develop several model variants of the same business process at different abstraction levels. Afterwards, maintenance of such model groups involves a lot of synchronization effort and is erroneous. We propose an abstraction technique that allows generalization of process models. Business process model abstraction assumes a detailed model of a process to be available and derives coarse-grained models from it. The task of abstraction is to tell significant model elements from insignificant ones and to reduce the latter. We propose to learn insignificant process elements from supplementary model information, e.g., task execution time or frequency of task occurrence. Finally, we discuss a mechanism for user control of the model abstraction level – an abstraction slider.
Resumo:
A key concept for the centralized provision of Business Process Management (BPM) is the Center of Excellence (CoE). Organizations establish a CoE (aka BPM Support Office) as their BPM maturity increases in order to ensure a consistent and cost-effective way of offering BPM services. The definition of the offerings of such a center and the allocation of roles and responsibilities play an important role within BPM Governance. In order to plan the role of such a BPM CoE, this chapter proposes the productization of BPM leading to a set of fifteen distinct BPM services. A portfolio management approach is suggested to position these services. The approach allows identifying specific normative strategies for each BPM service, such as further training or BPM communication and marketing. A public sector case study provides further insights into how this approach has been used in practice. Empirical evidence from a survey with 15 organizations confirms the coverage of this set of BPM services and shows typical profiles for such BPM Centers of Excellence.
Resumo:
As Business Process Management (BPM) is evolving and organisations are becoming more process oriented, the need for Expertise in BPM amongst practitioners has increased. Proactively managing Expertise in BPM is essential to unlock the potential of BPM as a management paradigm and competitive advantage. Whilst great attention is being paid by the BPM community to the technological aspects of BPM, relatively little research or work has been done concerning the expertise aspect of BPM. There is a substantial body of knowledge on expertise itself, however there is no common framework in existence at the time of writing, describing the fundamental attributes characterising Expertise in the illustrative context of BPM. There are direct implications of the understanding and characterisation of Expertise in the context of BPM as a key strategic component and success factor of BPM itself, as well as for those involved in BPM. Expertise in the context of BPM needs to be characterised to understand it, and be able to proactively manage it. Given the relative infancy of research into Expertise in the context of BPM, an exploration of the relevance and importance of Expertise in the context of BPM was considered essential, to ensure the study itself was of value to the BPM field. The aims of this research are firstly to address the two research questions 'why is expertise important and relevant in the context of BPM?', and 'how can Expertise in the context of BPM be characterised?', and secondly, the development of a comprehensive and validated A-priori model characterising Expertise in the illustrative context of BPM. The study is theory-guided. It has been undertaken via an extensive literature review across relevant literature domains, and a revelatory case study utilising several methods: informal discussions, an open-ended survey, and participant observation. An a-priori model was then developed which comprised of several Constructs and Sub-constructs, and several overall aspects of Expertise in BPM. This was followed by the conduct of interviews in the validation phase of the revelatory case study. The primary contributions of this study are to the fields of expertise, BPM and research. Contributions to the field of expertise include a comprehensive review of expertise literature in general and synthesised critique on expertise research, characterisation of expertise in an illustrative context as a system, and a comprehensive narrative of the dynamics and interrelationships of the core attributes characterising expertise. Contributions to the field of BPM include firstly, the establishment of the importance of understanding Expertise in the context of BPM, including a comprehensive overview of the role the relevance and importance of Expertise in the context of BPM, through explanation of the effect of Expertise in BPM. Secondly, a model characterising Expertise in the context of BPM, which can be used by BPM practitioners to clearly articulate and illuminate the state of Expertise in BPM in organisations. Contributions to the field of research include an extended view of Systems Theory developed, reflecting the importance of the system context in systems thinking, and a narrative on ontological innovation through the positioning of ontology as a meta-model of Expertise in the context of BPM.
Resumo:
Many organizations realize that increasing amounts of data (“Big Data”) need to be dealt with intelligently in order to compete with other organizations in terms of efficiency, speed and services. The goal is not to collect as much data as possible, but to turn event data into valuable insights that can be used to improve business processes. However, data-oriented analysis approaches fail to relate event data to process models. At the same time, large organizations are generating piles of process models that are disconnected from the real processes and information systems. In this chapter we propose to manage large collections of process models and event data in an integrated manner. Observed and modeled behavior need to be continuously compared and aligned. This results in a “liquid” business process model collection, i.e. a collection of process models that is in sync with the actual organizational behavior. The collection should self-adapt to evolving organizational behavior and incorporate relevant execution data (e.g. process performance and resource utilization) extracted from the logs, thereby allowing insightful reports to be produced from factual organizational data.
Resumo:
Business Process Management (BPM) (Dumas et al. 2013) investigates how organizations function and can be improved on the basis of their business processes. The starting point for BPM is that organizational performance is a function of process performance. Thus, BPM proposes a set of methods, techniques and tools to discover, analyze, implement, monitor and control business processes, with the ultimate goal of improving these processes. Most importantly, BPM is not just an organizational management discipline. BPM also studies how technology, and particularly information technology, can effectively support the process improvement effort. In the past two decades the field of BPM has been the focus of extensive research, which spans an increasingly growing scope and advances technology in various directions. The main international forum for state-of-the-art research in this field is the International Conference on Business Process Management, or “BPM” for short—an annual meeting of the aca ...
Resumo:
Broad knowledge is required when a business process is modeled by a business analyst. We argue that existing Business Process Management methodologies do not consider business goals at the appropriate level. In this paper we present an approach to integrate business goals and business process models. We design a Business Goal Ontology for modeling business goals. Furthermore, we devise a modeling pattern for linking the goals to process models and show how the ontology can be used in query answering. In this way, we integrate the intentional perspective into our business process ontology framework, enriching the process description and enabling new types of business process analysis. © 2008 IEEE.