938 resultados para Biometric recognition system


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The need to provide computers with the ability to distinguish the affective state of their users is a major requirement for the practical implementation of affective computing concepts. This dissertation proposes the application of signal processing methods on physiological signals to extract from them features that can be processed by learning pattern recognition systems to provide cues about a person's affective state. In particular, combining physiological information sensed from a user's left hand in a non-invasive way with the pupil diameter information from an eye-tracking system may provide a computer with an awareness of its user's affective responses in the course of human-computer interactions. In this study an integrated hardware-software setup was developed to achieve automatic assessment of the affective status of a computer user. A computer-based "Paced Stroop Test" was designed as a stimulus to elicit emotional stress in the subject during the experiment. Four signals: the Galvanic Skin Response (GSR), the Blood Volume Pulse (BVP), the Skin Temperature (ST) and the Pupil Diameter (PD), were monitored and analyzed to differentiate affective states in the user. Several signal processing techniques were applied on the collected signals to extract their most relevant features. These features were analyzed with learning classification systems, to accomplish the affective state identification. Three learning algorithms: Naïve Bayes, Decision Tree and Support Vector Machine were applied to this identification process and their levels of classification accuracy were compared. The results achieved indicate that the physiological signals monitored do, in fact, have a strong correlation with the changes in the emotional states of the experimental subjects. These results also revealed that the inclusion of pupil diameter information significantly improved the performance of the emotion recognition system. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fusarium oxysporum forma specialis cubense is a soilborne phytopathogen that infects banana. The true evolutionary identity of this so called species, Fusarium oxysporum, is still unknown. Many techniques have been applied in order to gain insight for the observed genetic diversity of this species. The current classification system is based on vegetative compatibility groups (VCG's). Vegetative compatibility is a self non-self recognition system in which only those belonging to a VCG can form stable heterokaryons, cells containing two distinct nuclei. Heterokaryons in turn, are formed from hypha! anastomosis, the fusion of two hyphae. Furthermore, subsequent to heterokaryon formation potential mechanisms exist which may generate genetic variability. One is through viral transfer upon hyphal anastomosis. The other mechanism is a form of mitotic recombination referred to as the parasexual cycle. Very little research has been performed to directly obser.ve the cellular events; hypha! anastomosis, heterokaryon formation, and the parasexual cycle in Fusarium oxysporum f. sp. cubense. The purpose of this research was to design and use methods which would allow for the detection of hypha! anastomosis and heterokaryon formation, as well as any characteristics surrounding this event, within and between VCG's in Foe. First, some general growth properties were recorded: the number of nuclei per hypha, the size ofthe hyphal tip cell, the size of the cell adjacent to the hypha! tip (pre-tip) cell, and the number of cells to the first branch point. Second, four methods were designed in order to assay hyphal anastomosis and heterokaryon formation: 1) pairings on membrane: phase or brightfield microscopy, 2) pairings on membrane: fluorescence microscopy, 3) spore crosses: fluorescence microscopy, and 4) double picks in fractionated MMA. All of these methods were promtsmg.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work focuses in the formal and technical analysis of some aspects of a constructed language. As a first part of the work, a possible coding for the language will be studied, emphasizing the pre x coding, for which an extension of the Hu man algorithm from binary to n-ary will be implemented. Because of that in the language we can't know a priori the frequency of use of the words, a study will be done and several strategies will be proposed for an open words system, analyzing previously the existing number of words in current natural languages. As a possible upgrade of the coding, we'll take also a look to the synchronization loss problem, as well as to its solution: the self-synchronization, a t-codes study with the number of possible words for the language, as well as other alternatives. Finally, and from a less formal approach, several applications for the language have been developed: A voice synthesizer, a speech recognition system and a system font for the use of the language in text processors. For each of these applications, the process used for its construction, as well as the problems encountered and still to solve in each will be detailed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Object recognition has long been a core problem in computer vision. To improve object spatial support and speed up object localization for object recognition, generating high-quality category-independent object proposals as the input for object recognition system has drawn attention recently. Given an image, we generate a limited number of high-quality and category-independent object proposals in advance and used as inputs for many computer vision tasks. We present an efficient dictionary-based model for image classification task. We further extend the work to a discriminative dictionary learning method for tensor sparse coding. In the first part, a multi-scale greedy-based object proposal generation approach is presented. Based on the multi-scale nature of objects in images, our approach is built on top of a hierarchical segmentation. We first identify the representative and diverse exemplar clusters within each scale. Object proposals are obtained by selecting a subset from the multi-scale segment pool via maximizing a submodular objective function, which consists of a weighted coverage term, a single-scale diversity term and a multi-scale reward term. The weighted coverage term forces the selected set of object proposals to be representative and compact; the single-scale diversity term encourages choosing segments from different exemplar clusters so that they will cover as many object patterns as possible; the multi-scale reward term encourages the selected proposals to be discriminative and selected from multiple layers generated by the hierarchical image segmentation. The experimental results on the Berkeley Segmentation Dataset and PASCAL VOC2012 segmentation dataset demonstrate the accuracy and efficiency of our object proposal model. Additionally, we validate our object proposals in simultaneous segmentation and detection and outperform the state-of-art performance. To classify the object in the image, we design a discriminative, structural low-rank framework for image classification. We use a supervised learning method to construct a discriminative and reconstructive dictionary. By introducing an ideal regularization term, we perform low-rank matrix recovery for contaminated training data from all categories simultaneously without losing structural information. A discriminative low-rank representation for images with respect to the constructed dictionary is obtained. With semantic structure information and strong identification capability, this representation is good for classification tasks even using a simple linear multi-classifier.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Faculdade de Medicina, Programa de Pós-Graduação em Patologia Molecular, 2016.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

One of the ways the South Carolina State Housing Finance and Development Authority fulfills this mission is through the purchase and servicing of mortgage loans. The 2007 Recession resulted in decreased revenues for the department while higher default, foreclosure and bankruptcy rates increased the department's manpower cost. The agency has since acquired different servicing software which complies with current industry regulations and is once again servicing the loans that it purchases. This project is to see if the department could improve any of their overall processes by using existing technologies and software to better utilize the new servicing system while minimizing manual tasks. This paper explores whether the existing Kofax Document Recognition system could improve this process and reduce overall employee time and effort?

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O Reconhecimento de Entidades Mencionadas tem como objectivo identificar e classificar entidades, baseando-se em determinadas categorias ou etiquetas, contidas em textos escritos em linguagem natural. O Sistema de Reconhecimento de Entidades Mencionadas implementado na elaboração desta Dissertação pretende identificar localidades presentes em textos informais e definir para cada localidade identificada uma das etiquetas “aldeia", "vila" ou “cidade" numa primeira aproximação ao problema. Numa segunda aproximação tiveram-se em conta as etiquetas "freguesia", "concelho" e "distrito". Para a obtenção das classificações das entidades procedeu-se a uma análise estatística do número de resultados obtidos numa pesquisa de uma entidade precedida por uma etiqueta usando o motor de pesquisa Google Search. ABSTRACT: Named Entitity Recognition has the objective of identifying and classifying entities, according to certain categories or labels, contained in texts written in natural language. The Named Entitity Recognition system implemented in the developing of this dissertation intends to identify localities in informal texts, setting for each one of these localities identified one of the labels "aldeia", ''vila" or "cidade" in a first approach to the problem. ln a second approach the labels "freguesia", "concelho" and "distrito" were taken in consideration. To obtain classifications for the entities a statistical analysis of the number of results returned by a search of an entity preceded by a label using Google search engine was performed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hand gesture recognition based on surface electromyography (sEMG) signals is a promising approach for the development of intuitive human-machine interfaces (HMIs) in domains such as robotics and prosthetics. The sEMG signal arises from the muscles' electrical activity, and can thus be used to recognize hand gestures. The decoding from sEMG signals to actual control signals is non-trivial; typically, control systems map sEMG patterns into a set of gestures using machine learning, failing to incorporate any physiological insight. This master thesis aims at developing a bio-inspired hand gesture recognition system based on neuromuscular spike extraction rather than on simple pattern recognition. The system relies on a decomposition algorithm based on independent component analysis (ICA) that decomposes the sEMG signal into its constituent motor unit spike trains, which are then forwarded to a machine learning classifier. Since ICA does not guarantee a consistent motor unit ordering across different sessions, 3 approaches are proposed: 2 ordering criteria based on firing rate and negative entropy, and a re-calibration approach that allows the decomposition model to retain information about previous sessions. Using a multilayer perceptron (MLP), the latter approach results in an accuracy up to 99.4% in a 1-subject, 1-degree of freedom scenario. Afterwards, the decomposition and classification pipeline for inference is parallelized and profiled on the PULP platform, achieving a latency < 50 ms and an energy consumption < 1 mJ. Both the classification models tested (a support vector machine and a lightweight MLP) yielded an accuracy > 92% in a 1-subject, 5-classes (4 gestures and rest) scenario. These results prove that the proposed system is suitable for real-time execution on embedded platforms and also capable of matching the accuracy of state-of-the-art approaches, while also giving some physiological insight on the neuromuscular spikes underlying the sEMG.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

L'obiettivo principale di questo lavoro di tesi è quello di migliorare gli algoritmi di morphing generation in termini di qualità visiva e di potenzialità di attacco dei sistemi automatici di riconoscimento facciale.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Esta tesis propone un sistema biométrico de geometría de mano orientado a entornos sin contacto junto con un sistema de detección de estrés capaz de decir qué grado de estrés tiene una determinada persona en base a señales fisiológicas Con respecto al sistema biométrico, esta tesis contribuye con el diseño y la implementación de un sistema biométrico de geometría de mano, donde la adquisición se realiza sin ningún tipo de contacto, y el patrón del usuario se crea considerando únicamente datos del propio individuo. Además, esta tesis propone un algoritmo de segmentación multiescala para solucionar los problemas que conlleva la adquisición de manos en entornos reales. Por otro lado, respecto a la extracción de características y su posterior comparación esta tesis tiene una contribución específica, proponiendo esquemas adecuados para llevar a cabo tales tareas con un coste computacional bajo pero con una alta precisión en el reconocimiento de personas. Por último, este sistema es evaluado acorde a la norma estándar ISO/IEC 19795 considerando seis bases de datos públicas. En relación al método de detección de estrés, esta tesis propone un sistema basado en dos señales fisiológicas, concretamente la tasa cardiaca y la conductancia de la piel, así como la creación de un innovador patrón de estrés que recoge el comportamiento de ambas señales bajo las situaciones de estrés y no-estrés. Además, este sistema está basado en lógica difusa para decidir el grado de estrés de un individuo. En general, este sistema es capaz de detectar estrés de forma precisa y en tiempo real, proporcionando una solución adecuada para sistemas biométricos actuales, donde la aplicación del sistema de detección de estrés es directa para evitar situaciónes donde los individuos sean forzados a proporcionar sus datos biométricos. Finalmente, esta tesis incluye un estudio de aceptabilidad del usuario, donde se evalúa cuál es la aceptación del usuario con respecto a la técnica biométrica propuesta por un total de 250 usuarios. Además se incluye un prototipo implementado en un dispositivo móvil y su evaluación. ABSTRACT: This thesis proposes a hand biometric system oriented to unconstrained and contactless scenarios together with a stress detection method able to elucidate to what extent an individual is under stress based on physiological signals. Concerning the biometric system, this thesis contributes with the design and implementation of a hand-based biometric system, where the acquisition is carried out without contact and the template is created only requiring information from a single individual. In addition, this thesis proposes an algorithm based on multiscale aggregation in order to tackle with the problem of segmentation in real unconstrained environments. Furthermore, feature extraction and matching are also a specific contributions of this thesis, providing adequate schemes to carry out both actions with low computational cost but with certain recognition accuracy. Finally, this system is evaluated according to international standard ISO/IEC 19795 considering six public databases. In relation to the stress detection method, this thesis proposes a system based on two physiological signals, namely heart rate and galvanic skin response, with the creation of an innovative stress detection template which gathers the behaviour of both physiological signals under both stressing and non-stressing situations. Besides, this system is based on fuzzy logic to elucidate the level of stress of an individual. As an overview, this system is able to detect stress accurately and in real-time, providing an adequate solution for current biometric systems, where the application of a stress detection system is direct to avoid situations where individuals are forced to provide the biometric data. Finally, this thesis includes a user acceptability evaluation, where the acceptance of the proposed biometric technique is assessed by a total of 250 individuals. In addition, this thesis includes a mobile implementation prototype and its evaluation.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

La cuestión principal abordada en esta tesis doctoral es la mejora de los sistemas biométricos de reconocimiento de personas a partir de la voz, proponiendo el uso de una nueva parametrización, que hemos denominado parametrización biométrica extendida dependiente de género (GDEBP en sus siglas en inglés). No se propone una ruptura completa respecto a los parámetros clásicos sino una nueva forma de utilizarlos y complementarlos. En concreto, proponemos el uso de parámetros diferentes dependiendo del género del locutor, ya que como es bien sabido, la voz masculina y femenina presentan características diferentes que deberán modelarse, por tanto, de diferente manera. Además complementamos los parámetros clásicos utilizados (MFFC extraídos de la señal de voz), con un nuevo conjunto de parámetros extraídos a partir de la deconstrucción de la señal de voz en sus componentes de fuente glótica (más relacionada con el proceso y órganos de fonación y por tanto con características físicas del locutor) y de tracto vocal (más relacionada con la articulación acústica y por tanto con el mensaje emitido). Para verificar la validez de esta propuesta se plantean diversos escenarios, utilizando diferentes bases de datos, para validar que la GDEBP permite generar una descripción más precisa de los locutores que los parámetros MFCC clásicos independientes del género. En concreto se plantean diferentes escenarios de identificación sobre texto restringido y texto independiente utilizando las bases de datos de HESPERIA y ALBAYZIN. El trabajo también se completa con la participación en dos competiciones internacionales de reconocimiento de locutor, NIST SRE (2010 y 2012) y MOBIO 2013. En el primer caso debido a la naturaleza de las bases de datos utilizadas se obtuvieron resultados cercanos al estado del arte, mientras que en el segundo de los casos el sistema presentado obtuvo la mejor tasa de reconocimiento para locutores femeninos. A pesar de que el objetivo principal de esta tesis no es el estudio de sistemas de clasificación, sí ha sido necesario analizar el rendimiento de diferentes sistemas de clasificación, para ver el rendimiento de la parametrización propuesta. En concreto, se ha abordado el uso de sistemas de reconocimiento basados en el paradigma GMM-UBM, supervectores e i-vectors. Los resultados que se presentan confirman que la utilización de características que permitan describir los locutores de manera más precisa es en cierto modo más importante que la elección del sistema de clasificación utilizado por el sistema. En este sentido la parametrización propuesta supone un paso adelante en la mejora de los sistemas de reconocimiento biométrico de personas por la voz, ya que incluso con sistemas de clasificación relativamente simples se consiguen tasas de reconocimiento realmente competitivas. ABSTRACT The main question addressed in this thesis is the improvement of automatic speaker recognition systems, by the introduction of a new front-end module that we have called Gender Dependent Extended Biometric Parameterisation (GDEBP). This front-end do not constitute a complete break with respect to classical parameterisation techniques used in speaker recognition but a new way to obtain these parameters while introducing some complementary ones. Specifically, we propose a gender-dependent parameterisation, since as it is well known male and female voices have different characteristic, and therefore the use of different parameters to model these distinguishing characteristics should provide a better characterisation of speakers. Additionally, we propose the introduction of a new set of biometric parameters extracted from the components which result from the deconstruction of the voice into its glottal source estimate (close related to the phonation process and the involved organs, and therefore the physical characteristics of the speaker) and vocal tract estimate (close related to acoustic articulation and therefore to the spoken message). These biometric parameters constitute a complement to the classical MFCC extracted from the power spectral density of speech as a whole. In order to check the validity of this proposal we establish different practical scenarios, using different databases, so we can conclude that a GDEBP generates a more accurate description of speakers than classical approaches based on gender-independent MFCC. Specifically, we propose scenarios based on text-constrain and text-independent test using HESPERIA and ALBAYZIN databases. This work is also completed with the participation in two international speaker recognition evaluations: NIST SRE (2010 and 2012) and MOBIO 2013, with diverse results. In the first case, due to the nature of the NIST databases, we obtain results closed to state-of-the-art although confirming our hypothesis, whereas in the MOBIO SRE we obtain the best simple system performance for female speakers. Although the study of classification systems is beyond the scope of this thesis, we found it necessary to analise the performance of different classification systems, in order to verify the effect of them on the propose parameterisation. In particular, we have addressed the use of speaker recognition systems based on the GMM-UBM paradigm, supervectors and i-vectors. The presented results confirm that the selection of a set of parameters that allows for a more accurate description of the speakers is as important as the selection of the classification method used by the biometric system. In this sense, the proposed parameterisation constitutes a step forward in improving speaker recognition systems, since even when using relatively simple classification systems, really competitive recognition rates are achieved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Molecular imprinting is a useful technique for the preparation of functional materials with molecular recognition properties. A Biomimetic Sensor Potentiometric System was developed for assessment of doxycycline (DOX) antibiotic. The molecularly imprinted polymer (MIP) was synthesized by using doxycycline as a template molecule, methacrylic acid (MAA) and/or acrylamide (AA) as a functional monomer and ethylene glycol dimethacrylat (EGDMA) as a cross-linking agent. The sensing elements were fabricated by the inclusion of DOX imprinted polymers in polyvinyl chloride (PVC) matrix. The sensors showed a high selectivity and a sensitive response to the template in aqueous system. Electrochemical evaluation of these sensors under static (batch) mode of operation reveals near-Nernstian response. MIP/MAA membrane sensor was incorporated in flow-through cells and used as detectors for flow injection analysis (FIA) of DOX. The method has the requisite accuracy, sensitivity and precision to assay DOX in tablets and biological fluids.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dissertation presented to obtain the Ph.D degree in Biology

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Hand gestures are a powerful way for human communication, with lots of potential applications in the area of human computer interaction. Vision-based hand gesture recognition techniques have many proven advantages compared with traditional devices, giving users a simpler and more natural way to communicate with electronic devices. This work proposes a generic system architecture based in computer vision and machine learning, able to be used with any interface for human-computer interaction. The proposed solution is mainly composed of three modules: a pre-processing and hand segmentation module, a static gesture interface module and a dynamic gesture interface module. The experiments showed that the core of visionbased interaction systems could be the same for all applications and thus facilitate the implementation. For hand posture recognition, a SVM (Support Vector Machine) model was trained and used, able to achieve a final accuracy of 99.4%. For dynamic gestures, an HMM (Hidden Markov Model) model was trained for each gesture that the system could recognize with a final average accuracy of 93.7%. The proposed solution as the advantage of being generic enough with the trained models able to work in real-time, allowing its application in a wide range of human-machine applications. To validate the proposed framework two applications were implemented. The first one is a real-time system able to interpret the Portuguese Sign Language. The second one is an online system able to help a robotic soccer game referee judge a game in real time.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, we present an integrated system for real-time automatic detection of human actions from video. The proposed approach uses the boundary of humans as the main feature for recognizing actions. Background subtraction is performed using Gaussian mixture model. Then, features are extracted from silhouettes and Vector Quantization is used to map features into symbols (bag of words approach). Finally, actions are detected using the Hidden Markov Model. The proposed system was validated using a newly collected real- world dataset. The obtained results show that the system is capable of achieving robust human detection, in both indoor and outdoor environments. Moreover, promising classification results were achieved when detecting two basic human actions: walking and sitting.