984 resultados para Biomedical engineering|Nuclear physics
Resumo:
Biometrics is one of the biggest tendencies in human identification. The fingerprint is the most widely used biometric. However considering the automatic fingerprint recognition a completely solved problem is a common mistake. The most popular and extensively used methods, the minutiae-based, do not perform well on poor-quality images and when just a small area of overlap between the template and the query images exists. The use of multibiometrics is considered one of the keys to overcome the weakness and improve the accuracy of biometrics systems. This paper presents the fusion of a minutiae-based and a ridge-based fingerprint recognition method at rank, decision and score level. The fusion techniques implemented leaded to a reduction of the Equal Error Rate by 31.78% (from 4.09% to 2.79%) and a decreasing of 6 positions in the rank to reach a Correct Retrieval (from rank 8 to 2) when assessed in the FVC2002-DB1A database. © 2008 IEEE.
Resumo:
Posture can be defined as the overall position and spatial orientation of the human body and its members relative to each other. The study of posture can be applied either static, with the subject standing still. Objectives: to identify and quantify the static posture alignment of individuals who were either symptomatic or asymptomatic for cervical pain. Methods: A cross-sectional study was carried out on subjects with cervical pain and individuals with no complaints of pain. The procedure consists in placing markers on specific points. Several views, following the protocol of the Posture Assessment software, regarding the measurement of angles (in degrees) and differences in lower leg lengths (in centimeters). Angles were analyzed through the comparison of averages between the groups using test t Student, (alpha=5%). Results: There enrolled 27 subjects. There were differences in horizontal alignment of head (3.37x1.33), acromia (2.60x1.18), iliac spines (2.91x0.67), vertical alignment of head (25.70x18.26) and in length of lower limbs (1.36x0.75) in respect to cervical and asymptomatic subjects. Conclusions: Was possible identify and quantify the static posture alignment of individuals with and with no cervical pain. The data obtained suggest the presence of asymmetry in all the symptomatic individuals studied. The data obtained suggest the presence of overall asymmetry in all the symptomatic individuals studied. © 2009 Springer-Verlag.
Resumo:
A microcontrolled instrument for measuring the energy fluence rate (or intensity) of X-ray pulses in the orthovoltage range of 120 to 300 kV is described. The prototype instrument consists of a pyroelectric sensor, a low-noise highsensitivity current-to-voltage converter, a microcontroller and a digital display. The response of the instrument is nonlinear with the intensity of the radiation. The precision is better than 3%. The equipment is inexpensive, rugged, simple to construct and has good long-term stability. © 2009 Springer-Verlag.
Resumo:
The Patellofemoral Pain Syndrome (PFPS), has a multifactorial etiology and affects approximately 7 to 15% of the population, mostly women, youth, adults and active persons. PFPS causes anterior or retropatelar pain that is exacerbated during functional motor gestures, such as up and down stairs or spending long periods of time sitting, squatting or kneeling. As the diagnostic evaluation of this syndrome is still indirect, different mechanisms and methodologies try to make a classification that distinguishes patients with PFPS in relation to asymptomatic. Thereby, the purpose of this investigation was to determine the characteristics of the electromyographic (EMG) signal in the frequency domain of the vastus medialis oblique (VMO) and vastus lateralis (VL) in patients with PFPS, during the ascent of stairs. 33 young women (22 control group and 11 PFPS group), were evaluated by EMG during ascent of stairs. The VMO mean power frequency (MPF) and the VL frequency 95% (F95) were lower in symptomatic individuals. This may be related to the difference in muscle recruitment strategy exerted by each muscle in the PFPS group compared to the control group.
Resumo:
This paper presents a novel approach to the computed assessment of a mammographic phantom device. The approach shown here is fully automated and is based on the automatic selection of the region of interest, in the use of the discrete wavelet transform (DWT) and morphological operators to assess the quality of the American College of Radiology (ACR) mammographic phantom images. The algorithms developed here have succesfully scored 30 images obtained with different combinations of voltage applied to the tube and exposure and could notice the differences in the radiographs due to the different level of exposure to radiation. © 2013 Springer-Verlag.
Resumo:
Obtaining a semi-automatic quantification of pathologies found in the lung, through images of high resolution computed tomography (HRCT), is of great importance to aid in medical diagnosis. Paraccocidioidomycosis (PCM) is a systemic disease that affects the lung and even after effective treatment leaves sequels such as pulmonary fibrosis and emphysema. It is very important to the area of tropical diseases that the lung injury be quantified more accurately. In this stud, we propose the development of algorithms in computational environment Matlab® able to objectively quantify lung diseases such as fibrosis and emphysema. The program consists in selecting the region of interest (ROI), and through the use of density masks and filters, obtaining the lesion area quantification in relation to the healthy area of the lung. The proposed method was tested on 15 exams of HRCT of patients with confirmed PCM. To prove the validity and effectiveness of the method, we used a virtual phantom, also developed in this research. © 2013 Springer-Verlag.
Resumo:
A hybrid magnetic instrumentation to detect a magnetic field from a permanent magnet, and to detect magnetic markers and tracers using alternating current biosusceptometry (ACB) is discussed. The instrument was used to in vitro evaluation of the esophageal transit time. The sensitivity between both magnetic methods was compared, showing sensitivity for in vivo applications. © 2013 Springer-Verlag.
Resumo:
The daily-to-day of medical practice is marked by a constant search for an accurate diagnosis and therapeutic assessment. For this purpose the doctor serves up a wide variety of imaging techniques, however, the methods using ionizing radiation still the most widely used because it is considered cheaper and above all very efficient when used with control and quality. The optimization of the risk-benefit ratio is considered a major breakthrough in relation to conventional radiology, though this is not the reality of computing and digital radiology, where Brazil has not established standards and protocols for this purpose. This work aims to optimize computational chest radiographs (anterior-posterior projection-AP). To achieve this objective were used a homogeneous phantoms that simulate the characteristics of absorption and scattering of radiation close to the chest of a patient standard. Another factor studied was the subjective evaluation of image quality, carried out by visual grading assessment (VGA) by specialists in radiology, using an anthropomorphic phantom to identify the best image for a particular pathology (fracture or pneumonia). Quantifying the corresponding images indicated by the radiologist was performed from the quantification of physical parameters (Detective Quantum Efficiency - DQE, Modulation Transfer Function - MTF and Noise Power Spectrum - NPS) using the software MatLab®. © 2013 Springer-Verlag.
Resumo:
Since its discovery, radioactivity has brought numerous benefits to human societies. It has many applications in medicine, serving as a tool for non-invasive methods for diagnosis and therapies against diseases such as cancer. It also applies to technologies for energy in nuclear power plants with relatively low impacts on terms of perfect security. All applications, however, have risks, requiring maximum caution to drive processes and operations involving radioactive elements because, once released into the environment, they have extremely harmful effects on organisms affected. This paper presents fundamental concepts and principles of nuclear physics in order to understand the effects of radioactive elements released into the environment, culminating on the issue of radioactive contamination. Literature review allowed us to understand the radioactive contamination problem on living beings. Three major nuclear accidents have happened in the last thirty years, two of them in consecutive years. The nuclear accident at Chernobyl, Ukraine, in 1986, polluted large areas, condemning hundreds of thousands of people to live with consequences of the accident and effects of radiation, killing thousands of people throughout the years. In 1987, a major radiological accident occurred in Goiania (GO) when a source of radioactive cesium was violated, leading to the death of those who had direct or indirect contact with cesium. The most recent accident, in March, 2011, was located at the nuclear power plant in Fukushima Prefecture, Japan, after an earthquake and tsunami hit the region. There is no extensive and accurate knowledge about the consequences of the contamination entailed in that accident, although it is possible to verify signals on a global scale. An analysis of reports of contamination of large areas generated by nuclear plants with release of hazardous wastes suggests it is necessary to rethink the energy matrix of the various countries...
Resumo:
The goal of this work is to study the process of interaction of protons with matter through Monte Carlo simulation. For this purpose, it was employed the SRIM program (Stopping and Range of Ions in Matter ) and MCNPX (Monte Carlo N-Particle eXtended) v2.50. This work is going to support the development of a tomography system with protons. It was studied the interaction of proton with the follow materials: Polimethyl Mehacralate (PMMA), MS20 Tissue Substitute and water. This work employed energies in range of 50 MeV and 250 MeV, that is the range of clinical interest. The energy loss of proton after cross a material layer, the decreasing of its intensity, the angular and lateral de ection of incident beam, including and excluding nuclear interactions. This work is related with Medical Physics and Material Physics, like interaction of radiation with matter, particle transport phenomena, and the experimental methods in Nuclear Physics like simulation and computational by Monte Carlo method
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We investigate the effects induced by excited leptons at the one-loop level in the observables measured on the Ζ peak at LEP. Using a general effective Lagrangian approach to describe the couplings of the excited leptons, we compute their contributions to both oblique parameters and Ζ partial widths. Our results show that the new effects are comparable to the present experimental sensitivity, but they do not lead to a significant improvement on the available constraints on the couplings and masses of these states.
Resumo:
High precision elastic and inelastic angular distributions have been measured for the O-16 + Al-27 system at a beam energy of 100 MeV. The data analysis confirms a rainbow formation as already predicted by parameter-free Coupled Channel calculations. It also helps to reveal the crucial role of inelastic couplings in the rainbow formation for heavier systems even at energies far above the Coulomb barrier. This feature, well known in atomic/molecular scattering, is experimentally studied for the first time in Nuclear Physics. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Nuclear astrophysics is a relatively young science; it is about half a century old. It is a multidisciplinary subject, since it combines nuclear physics with astrophysics and observations in astronomy. It also addresses fundamental issues in astrobiology through the formation of elements, in particular those required for a carbon-based life. In this paper, a rapid overview of nucleosynthesis is given, mainly from the point of view of nuclear physics. A short historical introduction is followed by the definition of the relevant nuclear parameters, such as nuclear reaction cross sections, astrophysical S-factors, the energy range defined by the Gamow peak and reaction rates. The different astrophysical scenarios that are the sites of nucleosynthesis, and different processes, cycles and chains that are responsible for the building of complex nuclei from the elementary hydrogen nuclei are then briefly described. Received 28 February 2012, accepted 5 April 2012, first published online 9 May 2012
Resumo:
Background: Heavy-flavor production in p + p collisions is a good test of perturbative-quantum-chromodynamics (pQCD) calculations. Modification of heavy-flavor production in heavy-ion collisions relative to binary-collision scaling from p + p results, quantified with the nuclear-modification factor (R-AA), provides information on both cold-and hot-nuclear-matter effects. Midrapidity heavy-flavor R-AA measurements at the Relativistic Heavy Ion Collider have challenged parton-energy-loss models and resulted in upper limits on the viscosity-entropy ratio that are near the quantum lower bound. Such measurements have not been made in the forward-rapidity region. Purpose: Determine transverse-momentum (p(T)) spectra and the corresponding R-AA for muons from heavy-flavor meson decay in p + p and Cu + Cu collisions at root s(NN) = 200 GeV and y = 1.65. Method: Results are obtained using the semileptonic decay of heavy-flavor mesons into negative muons. The PHENIX muon-arm spectrometers measure the p(T) spectra of inclusive muon candidates. Backgrounds, primarily due to light hadrons, are determined with a Monte Carlo calculation using a set of input hadron distributions tuned to match measured-hadron distributions in the same detector and statistically subtracted. Results: The charm-production cross section in p + p collisions at root s = 200 GeV, integrated over p(T) and in the rapidity range 1.4 < y < 1.9, is found to be d(sigma e (e) over bar)/dy = 0.139 +/- 0.029 (stat)(-0.058)(+0.051) (syst) mb. This result is consistent with a perturbative fixed-order-plus-next-to-leading-log calculation within scale uncertainties and is also consistent with expectations based on the corresponding midrapidity charm-production cross section measured by PHENIX. The R-AA for heavy-flavor muons in Cu + Cu collisions is measured in three centrality bins for 1 < p(T) < 4 GeV/c. Suppression relative to binary-collision scaling (R-AA < 1) increases with centrality. Conclusions: Within experimental and theoretical uncertainties, the measured charm yield in p + p collisions is consistent with state-of-the-art pQCD calculations. Suppression in central Cu + Cu collisions suggests the presence of significant cold-nuclear-matter effects and final-state energy loss.