145 resultados para Biom


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quantitative information on metazoan meiofaunal abundance and biomass was obtained from three continental shelf (at 40, 100 and 200 m depth) and four deep-sea stations (at 540, 700, 940 and 1540 m depth) in the Cretan Sea (South Aegean Sea, NE Mediterranean). Samples were collected on a seasonal basis (from August 1994 to September 1995) with the use of a multiple corer. Meiofaunal abundance and biomass on the continental shelf of the Cretan Sea were high, in contrast to the extremely low values reported for the bathyal sediments that showed values comparable to those reported for abyssal and hadal environments. In order to explain the spatial and seasonal changes in metazoan meiofauna these data were compared with: (1) the concentrations of 'food indicators' (such as proteins, lipids, soluble carbohydrates and CPE) (2) the bacterial biomass (3) the flux of labile organic compounds to the sea floor at a fixed station (D7, 1540 m depth). Highly significant relationships between meiofaunal parameters and CPE, protein and lipid concentrations and bacterial biomass were found. Most of the indicators of food quality and quantity (such as CPE, proteins and carbohydrates) showed a clear seasonality with highest values in February and lowest in September. Such changes were more evident on the continental shelf rather than at deeper depths. On the continental shelf, significant seasonal changes in meiofaunal density were related to changes in the input of labile organic carbon whereas meiofaunal assemblages on the deep-sea stations showed time-lagged changes in response to the food input recorded in February 95. At all deep-sea stations meiofaunal density increased with a time lag of 2 months. Indications for a time-lagged meiofaunal response to the food inputs were also provided by the increase in nauplii densities during May 95 and the increase in individual biomass of nematodes, copepods and polychaetes between February and May 1995. The lack of strong seasonal changes in deep sea meiofaunal density suggests that the supply of organic matter below 500 m is not strong enough to support a significant meiofaunal development. Below 700 m depth >92% of the total biomass in the sediment was represented by bacteria. The ratio of bacterial to meiofaunal biomass increased with increasing water depth indicating that bacteria are probably more effective than meiofauna in exploiting refractory organic compounds. These data lead us to hypothesise that the deep-sea sediments of the Cretan Sea are largely dependent upon a benthic microbial loop.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ocean acidification is receiving increasing attention because of its potential to affect marine ecosystems. Rare CO2 vents offer a unique opportunity to investigate the response of benthic ecosystems to acidification. However, the benthic habitats investigated so far are mainly found at very shallow water (less than or equal to 5 m depth) and therefore are not representative of the broad range of continental shelf habitats. Here, we show that a decrease from pH 8.1 to 7.9 observed in a CO2 vent system at 40 m depth leads to a dramatic shift in highly diverse and structurally complex habitats. Forests of the kelp Laminaria rodriguezii usually found at larger depths (greater than 65 m) replace the otherwise dominant habitats (i.e. coralligenous outcrops and rhodolith beds), which are mainly characterized by calcifying organisms. Only the aragonite-calcifying algae are able to survive in acidified waters, while high-magnesium-calcite organisms are almost completely absent. Although a long-term survey of the venting area would be necessary to fully understand the effects of the variability of pH and other carbonate parameters over the structure and functioning of the investigated mesophotic habitats, our results suggest that in addition of significant changes at species level, moderate ocean acidification may entail major shifts in the distribution and dominance of key benthic ecosystems at regional scale, which could have broad ecological and socio-economic implications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Southern Ocean ecosystem at the Antarctic Peninsula has steep natural environmental gradients, e.g. in terms of water masses and ice cover, and experiences regional above global average climate change. An ecological macroepibenthic survey was conducted in three ecoregions in the north-western Weddell Sea, on the continental shelf of the Antarctic Peninsula in the Bransfield Strait and on the shelf of the South Shetland Islands in the Drake Passage, defined by their environmental envelop. The aim was to improve the so far poor knowledge of the structure of this component of the Southern Ocean ecosystem and its ecological driving forces. It can also provide a baseline to assess the impact of ongoing climate change to the benthic diversity, functioning and ecosystem services. Different intermediate-scaled topographic features such as canyon systems including the corresponding topographically defined habitats 'bank', 'upper slope', 'slope' and 'canyon/deep' were sampled. In addition, the physical and biological environmental factors such as sea-ice cover, chlorophyll-a concentration, small-scale bottom topography and water masses were analysed. Catches by Agassiz trawl showed high among-station variability in biomass of 96 higher systematic groups including ecological key taxa. Large-scale patterns separating the three ecoregions from each other could be correlated with the two environmental factors, sea-ice and depth. Attribution to habitats only poorly explained benthic composition, and small-scale bottom topography did not explain such patterns at all. The large-scale factors, sea-ice and depth, might have caused large-scale differences in pelagic benthic coupling, whilst small-scale variability, also affecting larger scales, seemed to be predominantly driven by unknown physical drivers or biological interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study was conducted in the Swedish sub-Arctic, near Abisko, in order to assess the direction and scale of possible vegetation changes in the alpine-birch forest ecotone. We have re-surveyed shrub, tree and vegetation data at 549 plots grouped into 61 clusters. The plots were originally surveyed in 1997 and re-surveyed in 2010. Our study is unique for the area as we have quantitatively estimated a 19% increase in tree biomass mainly within the existing birch forest. We also found significant increases in the cover of two vegetation types - "birch forest-heath with mosses" and "meadow with low herbs", while the cover of snowbed vegetation decreased significantly. The vegetation changes might be caused by climate, herbivory and past human impact but irrespective of the causes, the observed transition of the vegetation will have substantial effects on the mountain ecosystems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Macro- and meiobenthic abundance and biomass as well as metabolic activity (respiration, ETS activity) have been studied along a transect ranging from 130 to 3000 m water depth off northern Morocco (35° N) during "Meteor" cruise No. 53 (1980). The distribution of chloroplastic pigment concentration (chlorophyll a, pheophytins) in the sediment has been investigated as a measure of sedimented primary organic matter. High chloroplastic pigment concentrations were found on the shelf and around the shelf break, but values declined rapidly between 200 and 600 m depth. Below 1200 m pigment concentrations remained at a relatively uniform low level. Macrobenthic abundance and biomass (wet weight) decreased with increasing water depth and with distance from the shore. Significant changes occurred between the shelf and upper slope and below 2000 m depth. Meiobenthic abundance and biomass (ash free dry weight) followed the same general pattern, but changes were found below 400 and 800 m depth. In the depth range of 1200 to 3000 m values differ only slightly. Meiofauna abundance and biomass show a good correlation with the sedimentary chloroplastic pigment concentrations. Respiratory activity of sediment cores, measured by a shipboard technique at ambient temperatures, decreased with water depth and shows a good correlation with the pigment concentrations. ETS activity was highest on the shelf and decreased with water depth, with significant changes between 200 and 400 m, and below 1200 m depth, respectively. Activity was generally highest in the top 5 cm of the sediment and was measurable, at all stations, down to 15 cm sediment depth. Shelf and upper slope stations exhibited a vertical distribution pattern of ETS activity in the sediment column, different from that of deeper stations. The importance of biological activity measurements as an estimate of productivity is discussed. To prove the thesis that differences in benthic abundance, biomass and activity reflect differences in pelagic surface primary production, in the case of the NW-African coast caused by different upwelling intensities, the values from 35° N were compared with data from 21° N (permanent upwelling activity) and 17° N (ca. 9 months upwelling per year). On the shelf and upper slope (< 500 m) hydrographical conditions (currents, internal waves) influence the deposition of organic matter and cause a biomass minimum between 200 and 400 m depth in some regions. But, in general, macrobenthic abundance and biomass increases with enhanced upwelling activity and reaches a maximum in the area off Cape Blanc (21° N). On the shelf and in the shelf break region meiofauna densities are higher at 35° N in comparison to 21° N; but in contrast to the decreasing meiofauna abundance with increasing water depth at 35° N, an abundance maximum between 400 and 1200 m depth is formed in the Cape Blanc region; this maximum coincides with the maximum of sedimentary chloroplastic pigment equivalents. The comparison of ETS activities between 35° N and 21° N shows on the shelf activity at 21° N is up to 14 times higher and on the slope 4-9 times higher, which demonstrates that benthic activity responds to the surface productivity regime.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A general study of structure, biomass, and dynamic estimates on meiofauna was carried out during PREFLEX (1975) and FLEX (1976), in 117- 141 m water depth. On the basis of these data an attempt was made to estimate meiofauna production, and this is discussed in relation to the energy input from the spring phytoplankton bloom. Sampling was performed at five stations, but only the stations 1, 4, and 5 were covered by a complete series from August 1975 to July 1976. At each station, from four replicate box core samples, two were withdrawn to study the abundance, distribution, and biomass of meiofauna, the content of chloroplastic pigment equivalents (CPE), and chemical and grain size analyses. At all stations grain size fell in the range of fine sand having median diameters (MD) of < 125 µm. From station 1 to 5 an increase in MD was observed. Highest values of CPE (7.81 µg m l**-1) and organic matter (4.7 %) were obtained in June and July (1976)/ August (1975), respectively. Meiofauna abundance was fairly uniform at all stations examined. Station 1 displayed maximal numbers during the whole investigation period. The abundance per 100 cm**2 varied between 15,550 and 34,900 organisms. All meiofauna studied both in total and as separate taxa showed annual cycles of abundance. Low abundance values were recorded during early summer, and maximum values during winter. High numbers of Foraminifera were obtained for August 1975 (9,460 per 100 cm**2) and July 1976 (9,710 per 100 cm**2). From December to June the values decreased from 3,280 to 1,030 per 100 cm**2. At station 1 maximum values of meiofauna biomass were recorded ranging from 1.5 to 2.7 g DWT m**-2. The mean meiofauna dry weight amounted to 2.1 g DWT m**-2. Based on minimum production, the P/B ratio for the area of station 1 might have a mean of 1.4. Taking into consideration generation times we believe that a turnover ratio of 2 is a conservative value for the Fladen Ground meiofauna. The annual production would amount to 4.2 g DWT m**-2 yr**-1. This is 27.5 % of the energy supply during the spring phytoplankton bloom, which is channelled into the meiofauna. The hypothesis is put forward that the energetic strategy of deep offshore meiofauna differs distinctively from that of shallow inshore meiofauna. While the shallow inshore meiofauna show a relatively fast response to organic matter input, the deep offshore meiofauna reacts much more slowly, the food energy consumption seems to be spread out over a longer period.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This data set comprises time series of aboveground community plant biomass (Sown plant community, Weed plant community, Dead plant material, and Unidentified plant material; all measured in biomass as dry weight) and species-specific biomass from the sown species of several experiments at the field site of a large grassland biodiversity experiment (the Jena Experiment; see further details below). Aboveground community biomass was normally harvested twice a year just prior to mowing (during peak standing biomass twice a year, generally in May and August; in 2002 only once in September) on all experimental plots in the Jena Experiment. This was done by clipping the vegetation at 3 cm above ground in up to four rectangles of 0.2 x 0.5 m per large plot. The location of these rectangles was assigned by random selection of new coordinates every year within the core area of the plots. The positions of the rectangles within plots were identical for all plots. The harvested biomass was sorted into categories: individual species for the sown plant species, weed plant species (species not sown at the particular plot), detached dead plant material (i.e., dead plant material in the data file), and remaining plant material that could not be assigned to any category (i.e., unidentified plant material in the data file). All biomass was dried to constant weight (70°C, >= 48 h) and weighed. Sown plant community biomass was calculated as the sum of the biomass of the individual sown species. The data for individual samples and the mean over samples for the biomass measures on the community level are given. Overall, analyses of the community biomass data have identified species richness as well as functional group composition as important drivers of a positive biodiversity-productivity relationship. The following series of datasets are contained in this collection: 1. Plant biomass form the Main Experiment: In the Main Experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). 2. Plant biomass from the Dominance Experiment: In the Dominance Experiment, 206 grassland plots of 3.5 x 3.5 m were established from a pool of 9 species that can be dominant in semi-natural grassland communities of the study region. In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 3, 4, 6, and 9 species). 3. Plant biomass from the monoculture plots: In the monoculture plots the sown plant community contains only a single species per plot and this species is a different one for each plot. Which species has been sown in which plot is stated in the plot information table for monocultures (see further details below). The monoculture plots of 3.5 x 3.5 m were established for all of the 60 plant species of the Jena Experiment species pool with two replicates per species like the other experiments in May 2002. All plots were maintained by bi-annual weeding and mowing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ongoing process of ocean acidification already affects marine life and, according to the concept of oxygen- and capacity limitation of thermal tolerance (OCLTT), these effects may be exacerbated at the boarders of the thermal tolerance window. We studied the effects of elevated CO2 concentrations on clapping performance and energy metabolism of the commercially important scallop Pecten maximus. Individuals were exposed for at least 30 days to 4°C (winter) or to 10°C (spring/summer) at either ambient (0.04 kPa, normocapnia) or predicted future PCO2 levels (0.11 kPa, hypercapnia). Cold (4°C) exposed groups revealed thermal stress exacerbated by PCO2 indicated by a high mortality overall and its increase from 55% under normocapnia to 90% under hypercapnia. We therefore excluded the 4°C groups from further experimentation. Scallops at 10°C showed impaired clapping performance following hypercapnic exposure. Force production was significantly reduced although the number of claps was unchanged between normo- and hypercapnia exposed scallops. The difference between maximal and resting metabolic rate (aerobic scope) of the hypercapnic scallops was significantly reduced compared to normocapnic animals, indicating a reduction in net aerobic scope. Our data confirm that ocean acidification narrows the thermal tolerance range of scallops resulting in elevated vulnerability to temperature extremes and impairs the animal's performance capacity with potentially detrimental consequences for its fitness and survival in the ocean of tomorrow.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding how aquatic species grow is fundamental in fisheries because stock assessment often relies on growth dependent statistical models. Length-frequency-based methods become important when more applicable data for growth model estimation are either not available or very expensive. In this article, we develop a new framework for growth estimation from length-frequency data using a generalized von Bertalanffy growth model (VBGM) framework that allows for time-dependent covariates to be incorporated. A finite mixture of normal distributions is used to model the length-frequency cohorts of each month with the means constrained to follow a VBGM. The variances of the finite mixture components are constrained to be a function of mean length, reducing the number of parameters and allowing for an estimate of the variance at any length. To optimize the likelihood, we use a minorization–maximization (MM) algorithm with a Nelder–Mead sub-step. This work was motivated by the decline in catches of the blue swimmer crab (BSC) (Portunus armatus) off the east coast of Queensland, Australia. We test the method with a simulation study and then apply it to the BSC fishery data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introducción: El Cáncer es prevenible en algunos casos, si se evita la exposición a sustancias cancerígenas en el medio ambiente. En Colombia, Cundinamarca es uno de los departamentos con mayores incrementos en la tasa de mortalidad y en el municipio de Sibaté, habitantes han manifestado preocupación por el incremento de la enfermedad. En el campo de la salud ambiental mundial, la georreferenciación aplicada al estudio de fenómenos en salud, ha tenido éxito con resultados válidos. El estudio propuso usar herramientas de información geográfica, para generar análisis de tiempo y espacio que hicieran visible el comportamiento del cáncer en Sibaté y sustentaran hipótesis de influencias ambientales sobre concentraciones de casos. Objetivo: Obtener incidencia y prevalencia de casos de cáncer en habitantes de Sibaté y georreferenciar los casos en un periodo de 5 años, con base en indagación de registros. Metodología: Estudio exploratorio descriptivo de corte transversal,sobre todos los diagnósticos de cáncer entre los años 2010 a 2014, encontrados en los archivos de la Secretaria de Salud municipal. Se incluyeron unicamente quienes tuvieron residencia permanente en el municipio y fueron diagnosticados con cáncer entre los años de 2010 a 2104. Sobre cada caso se obtuvo género, edad, estrato socioeconómico, nivel académico, ocupación y estado civil. Para el análisis de tiempo se usó la fecha de diagnóstico y para el análisis de espacio, la dirección de residencia, tipo de cáncer y coordenada geográfica. Se generaron coordenadas geográficas con un equipo GPS Garmin y se crearon mapas con los puntos de la ubicación de las viviendas de los pacientes. Se proceso la información, con Epi Info 7 Resultados: Se encontraron 107 casos de cáncer registrados en la Secretaria de Salud de Sibaté, 66 mujeres, 41 hombres. Sin división de género, el 30.93% de la población presento cáncer del sistema reproductor, el 18,56% digestivo y el 17,53% tegumentario. Se presentaron 2 grandes casos de agrupaciones espaciales en el territorio estudiado, una en el Barrio Pablo Neruda con 12 (21,05%) casos y en el casco Urbano de Sibaté con 38 (66,67%) casos. Conclusión: Se corroboro que el análisis geográfico con variables espacio temporales y de exposición, puede ser la herramienta para generar hipótesis sobre asociaciones de casos de cáncer con factores ambientales.