957 resultados para Biological nitrogen fixation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A cana-de-açúcar é uma cultura agrícola de grande importância econômica para o Brasil, e a expansão de seu cultivo para solos marginais requer uma maior utilização de fertilizantes à base de nitrogênio (N). Na maioria dos países produtores, a adubação nitrogenada se baseia em altas doses de aplicação, enquanto, no Brasil, o seu uso é relativamente baixo devido, em parte, ao processo de fixação biológica de nitrogênio (FBN) pela ação de bactérias diazotróficas. Além da FBN, as plantas adquirem fontes de N, como amônio e nitrato, por meio de transportadores de membranas localizados nas raízes. Há evidências que a associação com microrganismos pode favorecer as plantas por meio da regulação dos genes de transportadores de N. Desta forma, este trabalho teve como objetivo caracterizar o transporte de amônio e nitrato, avaliando a expressão gênica dos principais transportadores de N em cana-de-açúcar cultivada in vitro sob o efeito da associação com bactérias diazotróficas. Também foi descrita a comunidade bacteriana de plântulas in vitro, bem como o efeito da fertilização com N e da inoculação com bactérias diazotróficas em plantas maduras. Plântulas de \'SP70- 1143\' e \'Chunee\', que contrastam para FBN, foram empregadas em ensaios in vitro sob diversas concentrações e fontes de N em associação ou não com uma estirpe de Gluconacetobacter diazotrophicus ou um mistura de bactérias diazotróficas (G. diazotrophicus, Herbaspirillum seropedicae, H. rubrisubalbicans, Azospirillum amazonense e Burkholderia tropica). A caracterização do transporte de N por meio de ensaios de absorção de nitrato e amônio marcados (15N) revelou que a interação entre cana-de-açúcar x G. diazotrophicus induziu a expressão do gene do transportador de nitrato ScNRT2.1, o que levou a uma tendência no aumento no influxo de nitrato, assim como dos genes de transportadores de amônio ScAMT1.1 e ScAMT1.3, resultando em maiores influxos de amônio apenas para a cultivar \'SP70- 1143\'. Já a associação da cana-de-açúcar com a mistura de bactérias diazotróficas revelou que somente houve indução transcricional de ScAMT1.1, o que resultou na maior absorção de amônio em \'SP70-1143\'. Por sua vez, quando analisada a interação in vitro por 30 dias, a presença da bactéria, apesar de transiente, possivelmente favoreceu a expressão dos genes de transportadores de nitrato ScNRT1.1 e ScNRT2.1, e do transportador de amônio ScAMT1.1, resultando no maior acúmulo de 15N-nitrato de amônio nas plantas de \'SP70-1143\'. Foi detectada uma comunidade bacteriana associada a plântulas micropropagadas, a qual é distinta entre os genótipos \'SP70-1143\' e \'Chunee\' e se altera com a inoculação com G. diazotrophicus. Para as plantas cultivadas em campo, a comunidade bacteriana existente foi alterada pela fertilização de N, mas não pela inoculação com diazotróficas. Portanto, a inoculação com bactérias diazotróficas parece induzir a expressão dos principais genes transportadores de amônio e nitrato em plântulas do genótipo \'SP70-1143\' resultando na maior absorção de fontes inorgânicas de N.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Green grams (Phaseolus aures L.) and tomato (Solanum lycopersicum L) are widely grown in the vertisols of the Mwea Irrigation Scheme alongside the rice fields. Green grams can fix nitrogen (biological nitrogen fixation) and are grown for its highly nutritious and curative seeds while tomatoes are grown for its fruit rich in fibres, minerals and vitamins. The two can be prepared separately or together in a variety of ways including raw salads and/or cooked/fried. They together form significant delicacies consumed with rice which is the major cash crop grown in the black cotton soils. The crops can grow well in warm conditions but tomato is fairly adaptable except under excessive humidity and temperatures that reduce yields. Socio-economic prioritization by the farming community and on-farm demonstrations of soil management options were instituted to demonstrate enhanced green gram and tomato production in vertisol soils of lower parts of Kirinyaga County (Mwea East and Mwea West districts). Drainage management was recognized by the farming community as the best option although a reduced number of farmers used drainage and furrows/ridges, manure, fertilizer and shifting options with reducing order of importance. Unavailability of labour and/or financial cost for instituting these management options were indicated as major hindrances to adopt the yield enhancing options. Labour force was contributed to mainly by the family alongside hiring (64.2%) although 28% and 5.2% respectively used hired or family labour alone. The female role in farming activities dominated while the male role was minimal especially at weeding. The youth role remained excessively insignificant and altogether absent at marketing. Despite the need for labour at earlier activities (especially when management options needed to be instituted) it was at the marketing stage that this force was directed. Soils were considered infertile by 60% but 40% indicated that their farms had adequate fertility. Analysis showed that ridging and application of farm yard manure and fertilizer improved fertility, crop growth and income considerably. Phosphate and zinc enhancement reduced alkalinity and sodicity. Green gram and tomato yields increased under ridges and farm yard manure application by 17-25% which significantly enhanced household income.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Biológicas, Programa de Pós-Graduação em Biologia Microbiana, 2016.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aims to evaluate the phenotypical characteristics of bacterial isolates from mulungu (Erythrina velutina Willd.) nodules and determinate their Box-PCR fingerprinting. All bacteria were evaluated by the following phenotypic characteristics: growth rate, pH change, colony color and mucus production. The bacterial isolates able to re-nodulate the original host were also evaluated regarding its tolerance to increased salinity and different incubation temperatures, ability to growth using different carbon sources, intrinsic antibiotic resistance and ?in vitro? auxin biosynthesis. The molecular fingerprints were set up using the Box-PCR technique and the isolates were clustered by their profiles. Among the 22 bacterial isolates obtained, eight were able to re-nodulate the original host. Among the nodule inducing isolates, some were tolerant to 1% of NaCl and 39° C and all of them metabolized the maltose, fructose, glucose, sucrose and arabinose, were resistant to rifampicin and produced auxin. The bacteria showed low genetic similarity among them and reference strains, which indicates the great genetic variability of the isolates. The results of this work are the first reports about the bacterial isolates able to nodulate this species. A more deep study of these bacteria may reveal the existence of isolates tolerant to environmental stresses and suitable as a future mulungu inoculant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A cultura da cana-de-açúcar constitui-se numa importante fonte bioenergética e a redução de custos em seu sistema produtivo torna-se cada vez mais relevante. A contribuição de bactérias diazotróficas, capazes de se associarem à planta e fornecerem nitrogênio pelo processo de fixação biológica é vantajoso, pois permite reduzir ou até mesmo suprimir o uso de fertilizantes nitrogenados. Assim, e ste trabalho objetivou avaliar as características de desenvolvimento de cultivares de cana-de-açucar inoculadas com bactérias fixadoras de nitrogênio, em condição irrigada no semiárido brasileiro. O estudo foi desenvolvido na Usina Agrovale S.A., Juazeiro-BA, em delineamento de blocos casualizados, sendo os tratamentos representados por seis cultivares de cana-de-açúcar: RB 012018; RB 012046; RB 72454; RB 867515; RB 92579 e RB 961003, cultivadas com e sem inoculação e dois tratamentos adicionais (RB867515 e RB 72454) adubados com 120 kg de N ha-1. As avaliações biométricas consistiram na contagem de perfilhos aos 30, 60 e 90 dias após o plantio em cana planta e 30, 60 e 90 dias após a colheita em cana soca de primeira folha. Avaliaram-se, ainda, a altura, o diâmetro do colmo e o número de colmos das plantas em cada período. Os resultados permitiram concluir que a inoculação com bactérias diazotróficas em cana planta é eficiente e promove aumento no número de perfilhos. A resposta das cultivares de cana-de-açúcar à inoculação com bactérias diazotróficas nos parâmetros número de colmos, diâmetro de colmos e altura das plantas depende da cultivar.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several legumes have natural ability to associate with nitrogen - fixing bacteria known as rhizobia. The efficiency of this association depends on the plant and bacterial genotype and the edaphoclimatic conditions. Peanut is a tropical legume able to associate with a wide range of rhizobia and the selection of efficient bacteria is important to increase the nitrogen fixation in this crop. In order to investigate the agronomic efficiency of two Bradyrhizobiumstrains, two peanut genotypes were used in field trails carried out in three environments located at Brazilian Northeast. The genotypes (BR1 and L7 Bege) were submitted to rhizobial inoculation (SEMIA 6144 or ESA 123, both Bradyrhizobium strains, and chemical nitrogen fertilization in randomized block design experiments. The following traits were analyzed: flowering (F), main axis height (MAH), number of nodules/plant (NN), number of pods/plant (NP) and weight of pods (WP). Differential responses were found in all to treatments to NN, NP and WP, in the three environments studied. Overall, ESA 123 showed good agronomic performance inducing higher pod production. The results supportthe evaluation of the Bradyrhizobium in further experiments aiming at its recommendation to commercial inoculants in Brazilian Northeast region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O objetivo deste trabalho foi avaliar a localização e o numero de bactérias endolíticas em quatro genótipos de cana-de-açúcar e investigar sobre a possível existência de correlação com os resultados apresentados em trabalhos de quantificação da fixação biológica de nitrogênio (FBN). Fez-se um levantamento das bactérias diazotróficas presentes, e quantificou-se a população de Herbaspirillum spp. E Acetobacter diazotrophicus, em genótipos de cana-de-açúcar contrastantes quanto a capacidade de obter N da FBN. De acordo com o levantamento realizado neste trabalho, as bactérias estudadas (Azospirillum lipoferum, A. brasilense, A. amazonense, Herbaspirillum spp. e Acetobacter diazotrophicus) estavam presentes nos quatro genotipos avaliados e em todas as partes da planta, exceto A. amazonense, que nao foi isolado de amostras de folhas. A quantificaçãoo das bactérias Herbaspirillum spp. e A. diazotrophicus mostrou não haver diferenças significativas entre os genótipos, e que, geralmente, elas estão presentes em maior numero nas raízes. Enquanto Herbaspirillum spp. mantêm-se mais estável ao longo do ciclo da cultura, a população de A. diazotrophicus decresce com a aproximação do final do ciclo comercial. Pode-se sugerir que as diferenças entre as taxas de FBN encontradas nos diversos genótipos não e causada por diferenças na presença ou no numero das bactérias aqui estudadas The objective of this work was to find out the localization and number of endophytic bacteria in four sugar cane genotypes and investigate upon the possible existence of correlation to the results obtained in some studies about quantification of biological nitrogen fixation (BNF). A survey of the diazotrophic bacteria present in sugar cane genotypes differingin their capacity to obtain nitrogen through BNF was performed, and population of Herbaspirillum spp. and Acetobacter diazotrophicus was quantified. The bacteria tested in the survey were Azospirillum lipoferum, A. brasilense, A. amazonense, Herbaspirillum spp. and Acetobacter diazotrophicus. All these bacteria were present in the four genotypes and were found in all parts of the plants, except A. amazonense which was not isolated from leaf samples. The quantification of Herbaspirillum spp. and A. diazotrophicus showed that there were no significant differences among the sugar cane genotypes and, generally, the bacteria were in greater number in roots. While number of Herbaspirillum spp. remained stable during the life-cycle of the culture, the population of A. diazotrophicus suffer a decrease with the approach of the end of the commercial cycle. It is suggested that the differences in the rates of BNF found in sugar cane genotypes are not caused by differences in the presence or the number of the bacterial species studied here.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Foi avaliada a ocorrência e a distribuição de espécies de fungos micorrízicos arbusculares e A. diazotrophicus em plantios de cana-de-açúcar em diferentes tipos de manejo nos Estados do Rio de Janeiro e Pernambuco. Foram feitas 35 coletas de amostras de solo da rizosfera e de raízes de 14 variedades de cana-de-açúcar para extração de esporos e isolamento da bactéria. O numero de esporos variou de 18 a 2.070/ 100 mL de solo, e os maiores numero e diversidade de espécies foram verificados nos canaviais de Campos, RJ, especialmente naqueles que não adotam a queima de palhico. As espécies predominantes nas três localidades amostradas foram: Acaulospora sp., Scutellospora heterogama, Glomus etunicatum, Glomus occultum e Gigaspora margarita. A. diazotrophicus estava presente nas amostras de raízes colhidas em canaviais de Campos, com exceção de uma coleta de cana-de-açúcar plantada num solo usado como bacia de sedimentação de vinhaça. Não foi possível isolar essa bactéria a partir de esporos desinfestados dos FMAs nativos, apenas dos esporos lavados com agua estéril The occurrence and distribution of species of arbuscular mycorrhizae fungi and Acetobacter diazotrophicus in sugar cane (Saccharum officinarum) grown in different regimes of crop management in the States of Rio de Janeiro and Pernambuco were studied. Thirty five samples of the rhizosphere soil and roots were collected from 14 varieties of sugar cane for the extraction of spores and isolation of the bacterium. The number of spores varied from 18 to 2.070 per 100 mL of soil, and the greatest diversity of fungal species was found in the sugarcane fields of Campos (Rio de Janeiro State), especially in those where the sugarcane trash was not burned at harvest. The predominant species found in the three localities sampled were: Scutellospora heterogama, Glomus etunicatum, Glomus occultum, Glomus macrocarpum, Acaulospora sp. and Gigaspora margarita. A. diazotrophicus was present in almost all samples of root with the exception of one harvest of sugar cane taken from an area used for the sedimentation of vinasse (distillery waste). It was not possible to detect the bacterium from surface sterilised spores of native arbuscular mycorrhizal fungi (AMF), only from washed ones using sterile water.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitrogen fertilization from biological source is an uncommon practice for peanut growers due to the limited results, mainly in environments with water restriction. In this study, the response of a commercial Bradyrhizobium was evaluated on the nodulation and production of peanuts grown in sandy and medium textured soils. Two experiments using different soils were carried out in the field during the dry season, in Campina Grande, Paraíba State, Brazil. Three peanut genotypes were submitted to the following treatments: 1-no nitrogen fertilization (control), 2- chemical fertilization (ammonium sulfate) and 3- inoculation with Bradyrhizobium [commercial strain BR 1405 (SEMIA 6144)]. A completely randomized 3x3 factorial design was adopted with five repetitions for both experiments. The evaluates variables were: height of the main stem, number of nodes/plant, root length, root dry weight, weight of pods/plant and number of pods/plant. In addition, gas exchanges were estimated using IRGA apparatus. Both genotypes (BRS Havana and L7 Bege) were benefited in relation to production due to an inoculation with SEMIA 6144. No physiological response was verified in genotypes or N-treatments to gas exchange, excepting for the Ci/Ca ratio in the medium textured soil experiment. BRS Havana showed low Ci/Ca ratio in Bradyrhizobium treatment, indicating that SEMIA 6144 improved the plants photosynthetic efficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In agricultural systems which rely on organic sources of nitrogen (N), of which the primary source is biological N fixation (BNF), it is extremely important to use N as efficiently as possible with minimal losses to the environment. The amount of N through BNF should be maximised and the availability of the residual N after legumes should be synchronised to the subsequent plant needs in the crop rotation. Six field experiments in three locations in Finland were conducted in 1994-2006 to determine the productivity and amount of BNF in red clover-grass leys of different ages. The residual effects of the leys for subsequent cereals as well as the N leaching risk were studied by field measurements and by simulation using the CoupModel. N use efficiency (NUE) and N balances were also calculated. The yields of red clover-grass leys were highest in the two-year-old leys (6 700 kg ha-1) under study, but the differences between 2- and 3-year old leys were not high in most cases. BNF (90 kg ha-1 in harvested biomass) correlated strongly with red clover dry matter yield, as the proportion of red clover N derived from the atmosphere (> 85%) was high in our conditions of organically farmed field with low soil mineral N. A red clover content of over 40% in dry matter is targeted to avoid negative N-balances and to gain N for the subsequent crop. Surprisingly, the leys had no significant effect on the yields and N uptake of the two subsequent cereals (winter rye or spring wheat, followed by spring oats). On the other hand, yield and C:N of leys, as well as BNF-N and total-N incorporated into the soil influenced on subsequent cereal yields. NUE of cereals from incorporated ley crop residues was rather high, varying from 30% to 80% (mean 48%). The mineral N content of soil in the profile of 0-90 cm was low, mainly 15-30 kg ha-1. Simulation of N dynamics by CoupModel functioned satisfactorily and is considered a useful tool to estimate N flows in cropping systems relying on organic N sources. Understanding the long-term influence of cultivation history and soil properties on N dynamics remains to be a challenge to further research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microcoleus vaginatus Gom., the dominant species in biological soil crusts (BSCs) in desert regions, plays a significant role in maintaining the BSC structure and function. The BSC quality is commonly assessed by the chlorophyll a content, thickness, and compressive strength. Here, we have studied the effect of different proportions of M. vaginatus, collected from the Gurbantunggut Desert in northwestern China, on the BSC structure and function under laboratory conditions. We found that when M. vaginatus was absent in the BSC, the BSC coverage, quantified by the percentage of BSC area to total land surface area, was low with a chlorophyll a content of 4.77 x 10(-2) mg g(-1) dry soil, a thickness of 0.86 mm, and a compressive strength of 12.21 Pa. By increasing the percentage of M. vaginatus in the BSC, the BSC coverage, chlorophyll a content, crust thickness, and compressive strength all significantly increased (P < 0.01). The maximum chlorophyll a content (13.12 mg g(-1)dry soil), the highest crust thickness, and the compressive strength (1.48 mm and 36.60 Pa, respectively) occurred when the percentage of inoculated M. vaginatus reached 80% with a complex network of filaments under scanning electron microscope. The BSC quality indicated by the above variables, however, declined when the BSC was composed of pure M. vaginatus (monoculture). In addition, we found that secretion of filaments and polymer, which stick sands together in the BSC, increased remarkably with the increase of the dominant species until the percentage of M. vaginatus reached 80%. Our results suggest that not only the dominant species but also the accompanying taxa are critical for maintaining the structure and functions of the BSC and thus the stability of the BSC ecosystems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stable nitrogen isotope signatures of major sources of mineral nitrogen ( mineralization of soil organic nitrogen, biological N-2 fixation by legumes, annual precipitation and plant litter decomposition) were measured to relatively define their individual contribution to grass assimilation at the Haibei Alpine Meadow Ecosystem, Qinghai, China. The results indicated that delta N-15 values (- 2.40 parts per thousand to 0.97 parts per thousand) of all grasses were much lower than those of soil organic matter (3.4 +/- 0.18 parts per thousand) and mineral nitrogen ( ammonium and nitrate together,7.8 +/- 0.57 parts per thousand). Based on the patterns of stable nitrogen isotopes, soil organic matter (3.4 +/- 0.18 parts per thousand), biological N-2 fixation (0 parts per thousand), and precipitation (- 6.34 +/- 0.24 parts per thousand) only contributed to a small fraction of nitrogen requirements of grasses, but plant litter decomposition (- 1.31 +/- 1.01 parts per thousand) accounted for 67%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitrogen is an essential nutrient. It is for human, animal and plants a constituent element of proteins and nucleic acids. Although the majority of the Earth’s atmosphere consists of elemental nitrogen (N2, 78 %) only a few microorganisms can use it directly. To be useful for higher plants and animals elemental nitrogen must be converted to a reactive oxidized form. This conversion happens within the nitrogen cycle by free-living microorganisms, symbiotic living Rhizobium bacteria or by lightning. Humans are able to synthesize reactive nitrogen through the Haber-Bosch process since the beginning of the 20th century. As a result food security of the world population could be improved noticeably. On the other side the increased nitrogen input results in acidification and eutrophication of ecosystems and in loss of biodiversity. Negative health effects arose for humans such as fine particulate matter and summer smog. Furthermore, reactive nitrogen plays a decisive role at atmospheric chemistry and global cycles of pollutants and nutritive substances.rnNitrogen monoxide (NO) and nitrogen dioxide (NO2) belong to the reactive trace gases and are grouped under the generic term NOx. They are important components of atmospheric oxidative processes and influence the lifetime of various less reactive greenhouse gases. NO and NO2 are generated amongst others at combustion process by oxidation of atmospheric nitrogen as well as by biological processes within soil. In atmosphere NO is converted very quickly into NO2. NO2 is than oxidized to nitrate (NO3-) and to nitric acid (HNO3), which bounds to aerosol particles. The bounded nitrate is finally washed out from atmosphere by dry and wet deposition. Catalytic reactions of NOx are an important part of atmospheric chemistry forming or decomposing tropospheric ozone (O3). In atmosphere NO, NO2 and O3 are in photosta¬tionary equilibrium, therefore it is referred as NO-NO2-O3 triad. At regions with elevated NO concentrations reactions with air pollutions can form NO2, altering equilibrium of ozone formation.rnThe essential nutrient nitrogen is taken up by plants mainly by dissolved NO3- entering the roots. Atmospheric nitrogen is oxidized to NO3- within soil via bacteria by nitrogen fixation or ammonium formation and nitrification. Additionally atmospheric NO2 uptake occurs directly by stomata. Inside the apoplast NO2 is disproportionated to nitrate and nitrite (NO2-), which can enter the plant metabolic processes. The enzymes nitrate and nitrite reductase convert nitrate and nitrite to ammonium (NH4+). NO2 gas exchange is controlled by pressure gradients inside the leaves, the stomatal aperture and leaf resistances. Plant stomatal regulation is affected by climate factors like light intensity, temperature and water vapor pressure deficit. rnThis thesis wants to contribute to the comprehension of the effects of vegetation in the atmospheric NO2 cycle and to discuss the NO2 compensation point concentration (mcomp,NO2). Therefore, NO2 exchange between the atmosphere and spruce (Picea abies) on leaf level was detected by a dynamic plant chamber system under labo¬ratory and field conditions. Measurements took place during the EGER project (June-July 2008). Additionally NO2 data collected during the ECHO project (July 2003) on oak (Quercus robur) were analyzed. The used measuring system allowed simultaneously determina¬tion of NO, NO2, O3, CO2 and H2O exchange rates. Calculations of NO, NO2 and O3 fluxes based on generally small differences (∆mi) measured between inlet and outlet of the chamber. Consequently a high accuracy and specificity of the analyzer is necessary. To achieve these requirements a highly specific NO/NO2 analyzer was used and the whole measurement system was optimized to an enduring measurement precision.rnData analysis resulted in a significant mcomp,NO2 only if statistical significance of ∆mi was detected. Consequently, significance of ∆mi was used as a data quality criterion. Photo-chemical reactions of the NO-NO2-O3 triad in the dynamic plant chamber’s volume must be considered for the determination of NO, NO2, O3 exchange rates, other¬wise deposition velocity (vdep,NO2) and mcomp,NO2 will be overestimated. No significant mcomp,NO2 for spruce could be determined under laboratory conditions, but under field conditions mcomp,NO2 could be identified between 0.17 and 0.65 ppb and vdep,NO2 between 0.07 and 0.42 mm s-1. Analyzing field data of oak, no NO2 compensation point concentration could be determined, vdep,NO2 ranged between 0.6 and 2.71 mm s-1. There is increasing indication that forests are mainly a sink for NO2 and potential NO2 emissions are low. Only when assuming high NO soil emissions, more NO2 can be formed by reaction with O3 than plants are able to take up. Under these circumstance forests can be a source for NO2.