479 resultados para Beads
Resumo:
Fluid assessment methods, requiring small volumes and avoiding the need for jetting, are particularly useful in the design of functional fluids for inkjet printing applications. With the increasing use of complex (rather than Newtonian) fluids for manufacturing, single frequency fluid characterisation cannot reliably predict good jetting behaviour, owing to the range of shearing and extensional flow rates involved. However, the scope of inkjet fluid assessments (beyond achievement of a nominal viscosity within the print head design specification) is usually focused on the final application rather than the jetting processes. The experimental demonstration of the clear insufficiency of such approaches shows that fluid jetting can readily discriminate between fluids assessed as having similar LVE characterisation (within a factor of 2) for typical commercial rheometer measurements at shearing rates reaching 104rads-1.Jetting behaviour of weakly elastic dilute linear polystyrene solutions, for molecular weights of 110-488. kDa, recorded using high speed video was compared with recent results from numerical modelling and capillary thinning studies of the same solutions.The jetting images show behaviour ranging from near-Newtonian to "beads-on-a-string". The inkjet printing behaviour does not correlate simply with the measured extensional relaxation times or Zimm times, but may be consistent with non-linear extensibility L and the production of fully extended polymer molecules in the thinning jet ligament.Fluid test methods allowing a more complete characterisation of NLVE parameters are needed to assess inkjet printing feasibility prior to directly jetting complex fluids. At the present time, directly jetting such fluids may prove to be the only alternative. © 2014 The Authors.
Resumo:
Cellular behavior is strongly influenced by the architecture and pattern of its interfacing extracellular matrix (ECM). For an artificial culture system which could eventually benefit the translation of scientific findings into therapeutic development, the system should capture the key characteristics of a physiological microenvironment. At the same time, it should also enable standardized, high throughput data acquisition. Since an ECM is composed of different fibrous proteins, studying cellular interaction with individual fibrils will be of physiological relevance. In this study, we employ near-field electrospinning to create ordered patterns of collagenous fibrils of gelatin, based on an acetic acid and ethyl acetate aqueous co-solvent system. Tunable conformations of micro-fibrils were directly deposited onto soft polymeric substrates in a single step. We observe that global topographical features of straight lines, beads-on-strings, and curls are dictated by solution conductivity; whereas the finer details such as the fiber cross-sectional profile are tuned by solution viscosity. Using these fibril constructs as cellular assays, we study EA.hy926 endothelial cells' response to ROCK inhibition, because of ROCK's key role in the regulation of cell shape. The fibril array was shown to modulate the cellular morphology towards a pre-capillary cord-like phenotype, which was otherwise not observed on a flat 2-D substrate. Further facilitated by quantitative analysis of morphological parameters, the fibril platform also provides better dissection in the cells' response to a H1152 ROCK inhibitor. In conclusion, the near-field electrospun fibril constructs provide a more physiologically-relevant platform compared to a featureless 2-D surface, and simultaneously permit statistical single-cell image cytometry using conventional microscopy systems. The patterning approach described here is also expected to form the basics for depositing other protein fibrils, seen among potential applications as culture platforms for drug screening.
Resumo:
本论文对聚苯乙烯颗粒用作茂金属催化剂载体方面进行了研究,重点考察了载体粒子的结构设计以及聚乙烯的粒子成核模型。此外,我们基于烯烃聚合过程中的载体破碎模型提出了制备聚合物共混物的新方法。本论文的主要工作和研究成果,急结如下:1.制备了多孔性聚苯乙烯乳胶粒,并用于负载茂金属催化剂以及乙烯聚合试验。通过与对应的实心型负载催化剂对比发现,多孔型催化剂表现出更高的活性以及聚合出形态更好的聚乙烯产物,我们用催化剂粒子的破碎模型对这种现象进行了解释。最后,通过考察载体成份在聚乙烯中的分布情况给出了多孔载体在乙烯聚合过程中破碎的证据,指出这种破碎行为是提高催化剂活性和改善聚乙烯形态的根本原因。2.制备了大孔结构以及疏松结构的聚苯乙烯树脂颗粒,并用于茂金属催化剂的负载化和乙烯聚合试验。研究了载体粒子的溶胀能力以及溶胀程度对催化剂负载量和催化剂活性的影响。结果表明,随着载体溶胀度的提高,催化剂负载量和催化剂活性都得到提高。当载体粒子充分溶胀时,大孔型和疏松型催化剂显示出很高的活性,而载体溶胀程度低时则催化剂的活性很低。实验结果证明充分溶胀的载体粒子在乙烯聚合过程中已分裂成碎片,而没有溶胀的载体粒子则不能破碎,表明载体粒子是通过溶胀过程达到破碎目的的,并因此能够提高催化剂活性和改善聚乙烯产物的形态。3.我们提出了利用多孔型聚苯乙烯微球负载茂金属催化剂催化乙烯聚合过程来原位合成聚乙烯/聚苯乙烯(PE/PS)共混材料的新方法。聚苯乙烯组分首先作为载体负载催化剂,在乙烯聚合过程中破裂成碎片而均匀的分散在聚乙烯相中。我们着重考察了载体粒子的设计以及载体的破碎效果对共混物形态结构和力学性能的影响。这种方法即使没有增容剂也可以使聚苯乙烯组分以纳米级的相尺寸分散在聚乙烯基体中,得到具有细微相形态的共混物,因而能够有效的改善材料的力学性能。
Resumo:
A scheme based on a W-shaped axicon mirror device for total-internal-reflection fluorescence microscopy (TIRFM) is presented. This approach combines the advantages of higher efficiency compared with traditional TIRFM, adjustable illumination area, and simple switching between wide-field and TIRF imaging modes. TIRF images obtained with this approach are free of shadow artifacts and of interference fringes. Example micrographs of fluorescently labeled polystyrene beads, of Convallaria majalis tissue, and of Propidium-iodide-labeled Chinese hamster ovary cells are shown, and the capabilities of the scheme are discussed. (C) 2010 Optical Society of America
Resumo:
Swelling behaviour is one of the important properties for microcapsules made by hydrogels, which always affects the diffusion and release of drugs when the microcapsules are applied in drug delivery systems. In this paper, alginate-chitosan microcapsules were prepared by different technologies called external or internal gelation process respectively. With the volume swelling degree (S-w) as an index, the effect of properties of chitosan on the swelling behaviour of both microcapsules was investigated. It was demonstrated that the microcapsules with low molecular weight and high concentration of chitosan gave rise to low S-w. Considering the need of maintaining drug activity and drug loading, neutral pH and short gelation time were favorable. It was also noticed that S-w of internal gelation microcapsules was lower than that of external gelation microcapsules, which was interpreted by the structure analysis of internal or external gelation Ca-alginate beads with the aid of confocal laser scanning microscope. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
A novel poly-l-arginine microcapsule was prepared due to its nutritional function and pharmacological efficacy. A high-voltage electrostatic droplet generator was used to make uniform microcapsules. The results show that the membrane strength and permeating property are both remarkably affected with the changes of sodium alginate concentration. With the sodium alginate concentration increasing, gel beads sizes increase from 233 mum to 350 mum, release ratio is also higher at the same time, but the membrane strength decreases.
Resumo:
Silica gel was used as a support for the covalent coupling of liposomes, which could overcome drawbacks of soft gel beads in column efficiency and separation speed. The influences of the concentration of added dimethylaminopyridine and reaction time on the chloroformate activation reaction of silica gel were investigated. Temperature and pH for covalent coupling of liposomes on the activated silica gel were also optimized. Experimental results indicated that the stability of the covalently coupled liposome columns was obviously superior to that of the noncovalently coated liposome columns but the selectivity of both columns was basically identical. Separation and analysis of a crude extract of a traditional Chinese medicine Ligusticum Wallichii and a mixture of small peptides on both columns further support this conclusion.
Resumo:
Toward the development of an in vitro cultivation of marine sponge cells for sustainable production of bioactive metabolites, the attachment characteristics of marine sponge cells of Hymeniacidon perleve on three types of microcarriers, Hillex, Cytodex 3, and glass beads, were studied. Mixed cell population and enriched cell fractions of specific cell types by Ficoll gradient centrifugation (6%/8%/15%/20%) were also assessed. Cell attachment ratio (defined as the ratio of cells attached on microcarrier to the total number of cells in the culture) on glass beads is much higher than that on Cytodex 3 and Hillex for both mixed cell population and cell fraction at Ficoll 15-20% interface. The highest attachment ratio of 41% was obtained for the cell fraction at Ficoll 15-20% interface on glass beads, which was significantly higher than that of a mixed cell population (18%). The attachment kinetics on glass beads indicated that the attachment was completed within 1 h. Cell attachment ratio decreases with increase in cell-to-microcarrier ratio (3-30 cells/bead) and pH (7.6-9.0). The addition of serum and BSA (bovine serum albumin) reduced the cell attachment on glass beads.
Flow-through room temperature phosphorescence optosensing for the determination of lead in sea water
Resumo:
The chelates formed between the heavy metal ion Pb(II) and the reagents 8-hydroxy-5-quinolinesulphonic acid, 8-hydroxy-7-quinolinesulphonic acid and 8-hydroxy-7-iodo-5-quinolinesulphonic acid exhibit strong room temperature phosphorescence (RTP) if retained on the surface of anion exchange resin beads. Based on the on-line formation, in a flow-injection system, of such RTP lead chelates and their transient immobilization on an anion exchange resin, three flow-through optosensing systems are investigated for lead in sea water. Optimum experimental conditions and the analytical performance characteristics of the three optosensors are discussed. Relative standard deviations (RSDs) of the order of 3% are typical at 100 ng ml−1 Pb(II) and the active sensing phases can easily be regenerated by passing 500 μl of 6 M hydrochloric acid. A lead(II) detection limit of 0.1 ng ml−1 (3×background SD, for 2 ml sample injection volumes) was achieved for the optosensor based on 8-hydroxy-7-quinolinesulphonic acid. Possible interferences present in sea water, including cations and anions which could affect the sensor response, are discussed in detail. Finally, the selected RTP flow-through optical sensor has been successfully tested for the determination of lead in sea water at a few ng ml−1.
Resumo:
采用免疫亲和分离与质谱分析相结合的方法,对β2-微球蛋白抗原表位进行了系统研究.完整的抗原分子和已固定在载体(CNBr-activated Sepharose beads)上的单克隆抗体发生免疫亲和反应后,用Endoproteinase Glu-C,Trypsin,Aminopeptidase M和carboxypeptidase Y四种不同的蛋白酶依次酶解抗原分子,并采用基质辅助激光解析电离飞行时间质谱(MALDI-TOF-MS)技术对与抗体连接受保护而未发生水解的肽段进行了研究.结果表明:β2-微球蛋白抗原表位位于整个蛋白分子氨基酸序列的61~67位,即为SFYLLYY.通过合成肽段的分析,证明了SFYLLYY即为抗原表位,与亲和质谱方法分析结果一致.
Resumo:
Chitosan(chitin)/cellulose composites as biodegradable biosorbents were prepared under an environment-friendly preparation processes using ionic liquids. Infrared and X-ray photoelectron spectra indicated the stronger intermolecular hydrogen bond between chitosan and cellulose, and the hydroxyl and amine groups were believed to be the metal ion binding sites. Among the prepared biosorbents, freeze-dried composite had higher adsorption capacity and better stability. The capacity of adsorption was found to be Cu(II) (0.417 mmol/g) > Zn(II) (0.303 mmol/g) > Cr(VI) (0.251 mmol/g) > Ni(II) (0.225 mmol/g) > Ph(II) (0.127 mmol/g) at the same initial concentration 5 mmol L-1. In contrast to some other chitosan-type biosorbents, preparation and component of the biosorbent were obviously more environment friendly. Moreover, adsorption capacity of chitosan in the blending biosorbent could be fully shown.
Resumo:
Syndiotactic 1,2-polybutadiene (s-PB) is a typical thermoplastic elastomer with various applications because of its high reactivity. In the past, it is difficult to form s-PB fibers with a diameter below 10 mu m because of the limitation of the conventional method such as melt spinning. Here, we report for the first time on the production of s-PB nanofibers by using a simple electrospinning method. Ultrafine s-PB fibers without beads were electrospun from s-PB solutions in dichloromethane and characterized by environmental scanning electron microscope (ESEM), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). At 4 wt.% concentration of s-PB, the average diameter of s-PB was about 130 nm. We found that dichloromethane was a unique suitable solvent for the electrospinning of s-PB fibers, and the structure of syndiotactic was changed through the electrospinning process.
Resumo:
Matrix-assisted laser desorption ionization time-of-flight mass spectrometry(MALDI-TOF-MS), in combination with immunoaffinity provided a powerful tool for determining epitope (antigenic determinant) in protein. The linear epitope of the beta(2)-microglobulin was characterized in the paper. The method as follows: at first beta(2)-microglobulin was digested by a proteolytic enzyme to produce an appropriate set of peptide fragments, then peptide fragments containing the linear epitope were selected and separated from the pool of peptide fragments by immunoprecipitation with the monoclonal antibody. The agarose beads were collected carefully after the reaction. Unbound peptides would be washed away, while the peptides containing the epitope would remain bound to the immobilized antibody after. the beads were washed several times with appropriate buffer. At last the masses of the bound peptides were identified directly by MALDI-TOF MS. Using Endoproteinase Glu-C Endoproteinase Lys-C and Trypsin in the experiment, the linear epitope of beta(2)-microglobulin was located within peptide fragment 59-69, that is, DWSFYLLYYTE.
Resumo:
Macroporous and modified macroporous poly(styrene-co-methyl methacrylate-co-divinylbenzene) particles (m-PS and mm-PS) supported Cp2ZrCl2 were prepared and applied to ethylene polymerization using methylaluminoxane (MAO) as cocatalyst. The influences of the swelling response of the support particles on the catalyst loading capabilities of the supports as well as on the activities of the supported catalysts were studied. It was shown that the Zr loadings of the supports and the activities of the supported catalysts increased with the swelling extent of the support particles. The m-PS or mm-PS supported catalysts exhibited very high activities when the support particles were well swollen, whereas those catalysts devoid of swelling treatment gave much lower activities. Investigation on the distribution of the supports in the polyethylene by TEM indicated that the swelling of the support particles allowed the fragmentation of the catalyst particles. In contrast, the fragmentation of the support particles with poor swelling was hindered during ethylene polymerization.
Resumo:
Notch Izod impact strength of poly(propylene) (PP)/glass bead blends was studied as a function of temperature. The results indicated that the toughness for various blends could undergo a brittle-ductile transition (BDT) with increasing temperature. The BDT temperature (T-BD) decreased with increasing glass bead content. Introducing the interparticle distance (ID) concept into the study, it was found that the critical interparticle distance (IDc) reduced with increasing test temperature correspondingly. The static tensile tests showed that the Young's modulus of the blends decreased slightly first and thereafter increased with increasing glass bead content. However, the yield stress decreased considerably with the increase in glass bead content. Dynamic mechanical analysis (DMA) measurements revealed that the heat-deflection temperature of the PP could be much improved by the incorporation of glass beads. Moreover, the glass transition temperature (T-g) increased obviously with increasing glass beads content. Differential scanning calorimetry (DSC) results implied that the addition of glass beads could change the crystallinity as well as the melting temperature of the PP slightly.