988 resultados para Band gap modulation
Resumo:
The ternary Zn1-xCdxO (0less than or equal toxless than or equal to0.6) alloying films with highly c-axis orientation have been deposited on Si(111) substrates by direct current reactive magnetron sputtering method. X-ray diffraction measurement indicates that the wurtzite-type structure of ZnO can be stabilized up to nominal Cd content x similar to 0.6 without cubic CdO phase separation. The lattice parameter c of Zn1-xCdxO increases almost linearly from 5.229 Angstrom (x = 0) to 5.247 Angstrom (x = 0.6), indicating that Cd substitution takes place on the Zn lattice sites. The photoluminescence spectra of the Zn1-xCdxO thin films measured at 12 K display a substantial red shift (similar to0.3 eV) in the near-band-edges (NBEs) emission of ZnO: from 3.39 eV of ZnO to 3.00 eV of Zn0.4Cd0.6O. The direct modulation of band gap caused by Zn/Cd substitution is responsible for the red shift effect in NBE emission of ZnO. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
We have investigated the optical transitions in Ga1-yInyNxAs1-x/GaAs single and multiple quantum wells using photovoltaic measurements at room temperature. From a theoretical fit to the experimental data, the conduction band offset Q(c), electron effective mass m(e)*, and band gap energy E-g were estimated. It was found that the Q(c) is dependent on the indium concentration, but independent on the nitrogen concentration over the range x=(0-1)%. The m(e)* of GaInNAs is much greater than that of InGaAs with the same concentration of indium, and increases as the nitrogen concentration increases up to 1%. Our experimental results for the m(e)* and E-g of GaInNAs are quantitatively explained by the two-band model based on the strong interaction of the conduction band minimum with the localized N states. (C) 2001 American Institute of Physics.
Resumo:
The strain effect on the band structure of InAs/GaAs quantum dots has been investigated. 1 mu m thick InGaAs cap layer was added onto the InAs quantum dot layer to modify the strain in the quantum dots. The exciton energies of InAs quantum dots before and after the relaxation of the cap layer were determined by photoluminescence. When the epilayer was lifted off from the substrate by etching away the sacrifice layer (AlAs) by HF solution, the energy of exciton in the quantum dots decreases due to band gap narrowing resulted from the strain relaxation. This method can be used to obtain much longer emission wavelength from InAs quantum dots.
Resumo:
The correlation between the energy band-gap of AlxGa1-xN epitaxial thin films and lattice strain was investigated using both High Resolution X-ray Diffraction (HRXRD) and Spectroscopic Ellipsometry (SE). The Al fraction, lattice relaxation, and elastic lattice strain were determined for all AlxGa1-xN epilayers, and the energy gap as well. Given the type of intermediate layer, a correlation trend was found between energy band-gap bowing parameter and lattice mismatch, the higher the lattice mismatch is, the smaller the bowing parameter (b) will be.
Resumo:
X-ray photoelectron spectroscopy has been used to measure the valence band offset of the ZnO/BaTiO3 heterojunction grown by metal-organic chemical vapor deposition. The valence band offset (VBO) is determined to be 0.48 +/- 0.09 eV, and the conduction band offset (CBO) is deduced to be about 0.75 eV using the band gap of 3.1 eV for bulk BaTiO3. It indicates that a type-II band alignment forms at the interface, in which the valence and conduction bands of ZnO are concomitantly higher than those of BaTiO3. The accurate determination of VBO and CBO is important for use of semiconductor/ferroelectric heterojunction multifunctional devices.
Resumo:
A novel integration technique has been developed using band-gap energy control of InGaAsP/InGaAsP multiquantum-well (MQW) structures during simultaneous ultra-low-pressure (22 mbar) selective-area-growth (SAG) process in metal-organic chemical vapour deposition. A fundamental study of the controllability of band gap energy by the SAG method is performed. A large band-gap photoluminescence wavelength shift of 83nm is obtained with a small mask width variation (0-30μm). The method is then applied to fabricate an MQW distributed-feedback laser monolithically integrated with an electroabsorption modulator. The experimental results exhibit superior device characteristics with low threshold of 19mA, over 24 dB extinction ratio when coupled into a single mode fibre. More than 10 GHz modulation bandwidth is also achieved, which demonstrates that the ultra-low-pressure SAG technique is a promising approach for high-speed transmission photonic integrated circuits.
Resumo:
Poolton, Nigel; Hamilton, B.; Evans, D.A., (2005) 'Synchrotron-laser pump-probe luminescence spectroscopy: Correlation of electronic defect states with x-ray absorption in wide-gap solids', Journal of Physics D: Applied Physics 38 pp.1478-1484 RAE2008
Resumo:
Embedding a double barrier resonant tunnelling diode (RTD) in a unipolar InGaAlAs optical waveguide gives rise to a very low driving voltage electroabsorption modulator (EAM) at optical wavelengths around 1550 nm. The presence of the RTD within the waveguide core introduces high non- linearity and negative di erential resistance in the current±voltage (I±V) characteristic of the waveguide. This makes the electric ®eld distribution across the waveguide core strongly dependent on the bias voltage: when the current decreases from the peak to the valley, there is an increase of the electric ®eld across the depleted core. The electric ®eld enhancement in the core-depleted layer causes the Franz±Keldysh absorption band-edge to red shift, which is responsible for the electroabsorption e ect. High-frequency ac signals as low as 100mV can induce electric ®eld high-speed switching, producing substantial light modulation (up to 15 dB) at photon energies slightly lower than the waveguide core band-gap energy. The key di erence between this device and conventional p-i-n EAMs is that the tunnelling characteristics of the RTD are employed to switch the electric ®eld across the core-depleted region; the RTD- EAM has in essence an integrated electronic ampli®er and, therefore, requires considerably less switching power.
Resumo:
In this paper, the design of low profile antennas by using Electromagnetic Band Gap (EBG) structures is introduced. Taking advantage of the fact that they can behave as Perfect Magnetic Conductor (PMC), it is shown that these structures exhibit dual band in-phase reflection at WLAN (Wireless Local Area Network) bands, the 2.4 GHz and 5.2 GHz bands. These structures are applied to PIFA (Planar Inverted-F Antenna) and the results show that it is possible to obtain low profile PIFA's.
Resumo:
Non-destructive testing (NDT) is the use of non-invasive techniques to determine the integrity of a material, component, or structure. Engineers and scientists use NDT in a variety of applications, including medical imaging, materials analysis, and process control.Photothermal beam deflection technique is one of the most promising NDT technologies. Tremendous R&D effort has been made for improving the efficiency and simplicity of this technique. It is a popular technique because it can probe surfaces irrespective of the size of the sample and its surroundings. This technique has been used to characterize several semiconductor materials, because of its non-destructive and non-contact evaluation strategy. Its application further extends to analysis of wide variety of materials. Instrumentation of a NDT technique is very crucial for any material analysis. Chapter two explores the various excitation sources, source modulation techniques, detection and signal processing schemes currently practised. The features of the experimental arrangement including the steps for alignment, automation, data acquisition and data analysis are explained giving due importance to details.Theoretical studies form the backbone of photothermal techniques. The outcome of a theoretical work is the foundation of an application.The reliability of the theoretical model developed and used is proven from the studies done on crystalline.The technique is applied for analysis of transport properties such as thermal diffusivity, mobility, surface recombination velocity and minority carrier life time of the material and thermal imaging of solar cell absorber layer materials like CuInS2, CuInSe2 and SnS thin films.analysis of In2S3 thin films, which are used as buffer layer material in solar cells. The various influences of film composition, chlorine and silver incorporation in this material is brought out from the measurement of transport properties and analysis of sub band gap levels.The application of photothermal deflection technique for characterization of solar cells is a relatively new area that requires considerable attention.The application of photothermal deflection technique for characterization of solar cells is a relatively new area that requires considerable attention. Chapter six thus elucidates the theoretical aspects of application of photothermal techniques for solar cell analysis. The experimental design and method for determination of solar cell efficiency, optimum load resistance and series resistance with results from the analysis of CuInS2/In2S3 based solar cell forms the skeleton of this chapter.
Resumo:
We apply a self-energy-corrected local density approximation (LDA) to obtain corrected bulk band gaps and to study the band offsets of AlAs grown on GaAs (AlAs/GaAs). We also investigate the Al(x)Ga(1-x)As/GaAs alloy interface, commonly employed in band gap engineering. The calculations are fully ab initio, with no adjustable parameters or experimental input, and at a computational cost comparable to traditional LDA. Our results are in good agreement with experimental values and other theoretical studies. Copyright (C) EPLA, 2011
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We consider a dynamical model of a superfluid Fermi gas in the Bardeen-Cooper-Schrieffer regime trapped in a periodic optical lattice (OL) potential. The model is based on an equation for complex order parameter phi of the superfluid, which is derived from the relevant energy density and includes a self-repulsive term similar to phi(7/3). By means of the variational approximation (VA) and numerical simulations, we find families of stable one- and two-dimensional (I D and 2D) gap solitons (GSs) in this model. Chiefly, they are compact objects trapped in a single cell of the OL. Families of stable even and odd bound states of these GSs are also found in one dimension. A 3D GS family is constructed too, but solely within the framework of the VA. In the linear limit, the VA predicts an almost exact position of the left edge of the first band-gap in the OL-induced spectrum. The full VA provides an accurate description of families of I D and 2D fundamental GSs. We also demonstrate that a I D GS can be safely transported by an OL moving at a moderate velocity. (C) 2009 IMACS. Published by Elsevier B.V. All rights reserved.
Resumo:
Using the variational approximation and numerical simulations, we study one-dimensional gap solitons in a binary Bose-Einstein condensate trapped in an optical-lattice potential. We consider the case of interspecies repulsion, while the intraspecies interaction may be either repulsive or attractive. Several types of gap solitons are found: symmetric or asymmetric; unsplit or split, if centers of the components coincide or separate; intragap (with both chemical potentials falling into a single band gap) or intergap, otherwise. In the case of the intraspecies attraction, a smooth transition takes place between solitons in the semi-infinite gap, those in the first finite band gap, and semigap solitons (with one component in a band gap and the other in the semi-infinite gap).
Resumo:
Investigations of photo-induced structural transformations (PST) and related changes of optical parameters in the light-sensitive amorphous chalcogenides were extended to composite layers, which consist of a wide band-gap material and an active material, Se60Te40 with a smaller band gap. Photo-stimulated interdiffusion and/or crystallization in layered Se0.6Tc0.4/As0.6Se0.94 and Se0.6Te0.4/SiOx were investigated with respect to their dependence on the compositional modulation of the multilayer at scale-dimensions (similar to3-10nm). It was established that PST due to the interdiffusion and crystallization can be efficiently operated by the composition of the adjacent layers of the multilayer which results in the change of the transformation rate and of the optical relief type (positive or negative). The comparison with a single Se0.6Te0.4 layer and with the known data for amorphous-Se/As2S3 multilayers supports the advantages of composite layers for amplitude-phase optical recording. (C) 2004 Published by Elsevier B.V.