923 resultados para BRAIN IMAGING


Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND Previous neuroimaging studies indicate abnormalities in cortico-limbic circuitry in mood disorder. Here we employ prospective longitudinal voxel-based morphometry to examine the trajectory of these abnormalities during early stages of illness development. METHOD Unaffected individuals (16-25 years) at high and low familial risk of mood disorder underwent structural brain imaging on two occasions 2 years apart. Further clinical assessment was conducted 2 years after the second scan (time 3). Clinical outcome data at time 3 was used to categorize individuals: (i) healthy controls ('low risk', n = 48); (ii) high-risk individuals who remained well (HR well, n = 53); and (iii) high-risk individuals who developed a major depressive disorder (HR MDD, n = 30). Groups were compared using longitudinal voxel-based morphometry. We also examined whether progress to illness was associated with changes in other potential risk markers (personality traits, symptoms scores and baseline measures of childhood trauma), and whether any changes in brain structure could be indexed using these measures. RESULTS Significant decreases in right amygdala grey matter were found in HR MDD v. controls (p = 0.001) and v. HR well (p = 0.005). This structural change was not related to measures of childhood trauma, symptom severity or measures of sub-diagnostic anxiety, neuroticism or extraversion, although cross-sectionally these measures significantly differentiated the groups at baseline. CONCLUSIONS These longitudinal findings implicate structural amygdala changes in the neurobiology of mood disorder. They also provide a potential biomarker for risk stratification capturing additional information beyond clinically ascertained measures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Les informations sensorielles sont traitées dans le cortex par des réseaux de neurones co-activés qui forment des assemblées neuronales fonctionnelles. Le traitement visuel dans le cortex est régit par différents aspects des caractéristiques neuronales tels que l’aspect anatomique, électrophysiologique et moléculaire. Au sein du cortex visuel primaire, les neurones sont sélectifs à divers attributs des stimuli tels que l’orientation, la direction, le mouvement et la fréquence spatiale. Chacun de ces attributs conduit à une activité de décharge maximale pour une population neuronale spécifique. Les neurones du cortex visuel ont cependant la capacité de changer leur sélectivité en réponse à une exposition prolongée d’un stimulus approprié appelée apprentissage visuel ou adaptation visuelle à un stimulus non préférentiel. De ce fait, l’objectif principal de cette thèse est d’investiguer les mécanismes neuronaux qui régissent le traitement visuel durant une plasticité induite par adaptation chez des animaux adultes. Ces mécanismes sont traités sous différents aspects : la connectivité neuronale, la sélectivité neuronale, les propriétés électrophysiologiques des neurones et les effets des drogues (sérotonine et fluoxétine). Le modèle testé se base sur les colonnes d’orientation du cortex visuel primaire. La présente thèse est subdivisée en quatre principaux chapitres. Le premier chapitre (A) traite de la réorganisation du cortex visuel primaire suite à une plasticité induite par adaptation visuelle. Le second chapitre (B) examine la connectivité neuronale fonctionnelle en se basant sur des corrélations croisées entre paires neuronales ainsi que sur des corrélations d’activités de populations neuronales. Le troisième chapitre (C) met en liaison les aspects cités précédemment (les effets de l’adaptation visuelle et la connectivité fonctionnelle) aux propriétés électrophysiologiques des neurones (deux classes de neurones sont traitées : les neurones à décharge régulière et les neurones à décharge rapide ou burst). Enfin, le dernier chapitre (D) a pour objectif l’étude de l’effet du couplage de l’adaptation visuelle à l’administration de certaines drogues, notamment la sérotonine et la fluoxétine (inhibiteur sélectif de recapture de la sérotonine). Méthodes En utilisant des enregistrements extracellulaires d’activités neuronales dans le cortex visuel primaire (V1) combinés à un processus d’imagerie cérébrale optique intrinsèque, nous enregistrons l’activité de décharge de populations neuronales et nous examinons l’activité de neurones individuels extraite des signaux multi-unitaires. L’analyse de l’activité cérébrale se base sur différents algorithmes : la distinction des propriétés électrophysiologiques des neurones se fait par calcul de l’intervalle de temps entre la vallée et le pic maximal du potentiel d’action (largeur du potentiel d’action), la sélectivité des neurones est basée sur leur taux de décharge à différents stimuli, et la connectivité fonctionnelle utilise des calculs de corrélations croisées. L’utilisation des drogues se fait par administration locale sur la surface du cortex (après une craniotomie et une durotomie). Résultats et conclusions Dans le premier chapitre, nous démontrons la capacité des neurones à modifier leur sélectivité après une période d’adaptation visuelle à un stimulus particulier, ces changements aboutissent à une réorganisation des cartes corticales suivant un patron spécifique. Nous attribuons ce résultat à la flexibilité de groupes fonctionnels de neurones qui étaient longtemps considérés comme des unités anatomiques rigides. En effet, nous observons une restructuration extensive des domaines d’orientation dans le but de remodeler les colonnes d’orientation où chaque stimulus est représenté de façon égale. Ceci est d’autant plus confirmé dans le second chapitre où dans ce cas, les cartes de connectivité fonctionnelle sont investiguées. En accord avec les résultats énumérés précédemment, les cartes de connectivité montrent également une restructuration massive mais de façon intéressante, les neurones utilisent une stratégie de sommation afin de stabiliser leurs poids de connectivité totaux. Ces dynamiques de connectivité sont examinées dans le troisième chapitre en relation avec les propriétés électrophysiologiques des neurones. En effet, deux modes de décharge neuronale permettent la distinction entre deux classes neuronales. Leurs dynamiques de corrélations distinctes suggèrent que ces deux classes jouent des rôles clés différents dans l’encodage et l’intégration des stimuli visuels au sein d’une population neuronale. Enfin, dans le dernier chapitre, l’adaptation visuelle est combinée avec l’administration de certaines substances, notamment la sérotonine (neurotransmetteur) et la fluoxétine (inhibiteur sélectif de recapture de la sérotonine). Ces deux substances produisent un effet similaire en facilitant l’acquisition des stimuli imposés par adaptation. Lorsqu’un stimulus non optimal est présenté en présence de l’une des deux substances, nous observons une augmentation du taux de décharge des neurones en présentant ce stimulus. Nous présentons un modèle neuronal basé sur cette recherche afin d’expliquer les fluctuations du taux de décharge neuronale en présence ou en absence des drogues. Cette thèse présente de nouvelles perspectives quant à la compréhension de l’adaptation des neurones du cortex visuel primaire adulte dans le but de changer leur sélectivité dans un environnement d’apprentissage. Nous montrons qu’il y a un parfait équilibre entre leurs habiletés plastiques et leur dynamique d’homéostasie.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this tertiary hospital-based cohort study was to determine and compare perinatal outcome and neonatal morbidities of pregnancies with twin-twin transfusion syndrome (TTTS) before and after the introduction of a treatment program with laser ablation of placental communicating vessels. Twenty-seven pregnancies with Stage II-IV TTTS treated with amnioreduction were identified (amnioreduction group). The data were compared with that obtained from the first 31 pregnancies with Stage II-IV TTTS managed with laser ablation of placental communicating vessels (laser group). Comparisons were made for perinatal survival and neonatal morbidities including abnormalities on brain imaging. The median gestation at therapy was similar between the two groups (20 vs. 21 weeks, p = .24), while the median gestation at delivery was significantly greater in the laser treated group (34 vs. 28 weeks, p = .002). The perinatal survival rate was higher in the laser group (77.4% vs. 59.3%, p = .03). Neonatal morbidities including acute respiratory distress, chronic lung disease, requirement for ventilatory assistance, patent ductus arteriosus, hypotension, and oliguric renal failure had a lower incidence in the laser group. On brain imaging, ischemic brain injury was seen in 12% of the amnioreduction group and none of the laser group of infants (p = .01). In conclusion, these findings indicate that perinatal outcomes are improved with less neonatal morbidity for monochorionic pregnancies with severe TTTS treated by laser ablation of communicating placental vessels when compared to treatment by amnioreduction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Magnetoencephalography (MEG) is a non-invasive brain imaging technique with the potential for very high temporal and spatial resolution of neuronal activity. The main stumbling block for the technique has been that the estimation of a neuronal current distribution, based on sensor data outside the head, is an inverse problem with an infinity of possible solutions. Many inversion techniques exist, all using different a-priori assumptions in order to reduce the number of possible solutions. Although all techniques can be thoroughly tested in simulation, implicit in the simulations are the experimenter's own assumptions about realistic brain function. To date, the only way to test the validity of inversions based on real MEG data has been through direct surgical validation, or through comparison with invasive primate data. In this work, we constructed a null hypothesis that the reconstruction of neuronal activity contains no information on the distribution of the cortical grey matter. To test this, we repeatedly compared rotated sections of grey matter with a beamformer estimate of neuronal activity to generate a distribution of mutual information values. The significance of the comparison between the un-rotated anatomical information and the electrical estimate was subsequently assessed against this distribution. We found that there was significant (P < 0.05) anatomical information contained in the beamformer images across a number of frequency bands. Based on the limited data presented here, we can say that the assumptions behind the beamformer algorithm are not unreasonable for the visual-motor task investigated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background The somatosensory cortex has been inconsistently activated in pain studies and the functional properties of subregions within this cortical area are poorly understood. To address this we used magnetoencephalography (MEG), a brain imaging technique capable of recording changes in cortical neural activity in real-time, to investigate the functional properties of the somatosensory cortex during different phases of the visceral pain experience. Methods In eight participants (4 male), 151-channel whole cortex MEG was used to detect cortical neural activity during 25 trials lasting 20 seconds each. Each trial comprised four separate periods of 5 seconds in duration. During each of the periods, different visual cues were presented, indicating that period 1=rest, period 2=anticipation, period 3=pain and period 4=post pain. During period 3, participants received painful oesophageal balloon distensions (four at 1 Hz). Regions of cortical activity were identified using Synthetic Aperture Magnetometry (SAM) and by the placement of virtual electrodes in regions of interest within the somatosensory cortex, time-frequency wavelet plots were generated. Results SAM analysis revealed significant activation with the primary (S1) and secondary (S2) somatosensory cortices. The time-frequency wavelet spectrograms showed that activation in S1 increased during the anticipation phase and continued during the presentation of the stimulus. In S2, activation was tightly time and phase-locked to the stimulus within the pain period. Activations in both regions predominantly occurred within the 10–15 Hz and 20–30 Hz frequency bandwidths. Discussion These data are consistent with the role of S1 and S2 in the sensory discriminatory aspects of pain processing. Activation of S1 during anticipation and then pain may be linked to its proposed role in attentional as well as sensory processing. The stimulus-related phasic activity seen in S2 demonstrates that this region predominantly encodes information pertaining to the nature and intensity of the stimulus.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose - To describe the utility of three of the main cognitive neuroscientific techniques currently in use within the neuroscience community, and how they can be applied to the emerging field of neuromarket research. Design/methodology/approach - A brief development of functional magnetic resonance imaging, magnetoencephalography and transcranial magnetic stimulation are described, as the core principles are behind their respective use. Examples of actual data from each of the brain imaging techniques are provided to assist the neuromarketer with subsequent data for interpretation. Finally, to ensure the neuromarketer has an understanding of the experience of neuroimaging, qualitative data from a questionnaire exploring attitudes about neuroimaging techniques are included which summarize participants' experiences of having a brain scan. Findings - Cognitive neuroscientific techniques have great utility in market research and can provide more "honest" indicators of consumer preference where traditional methods such as focus groups can be unreliable. These techniques come with complementary strengths which allow the market researcher to converge onto a specific research question. In general, participants considered brain imaging techniques to be relatively safe. However, care is urged to ensure that participants are positioned correctly in the scanner as incorrect positioning is a stressful factor during an imaging procedure that can impact data quality. Originality/value - This paper is an important and comprehensive resource to the market researcher who wishes to use cognitive neuroscientific techniques.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pain is a ubiquitous yet highly variable experience. The psychophysiological and genetic factors responsible for this variability remain unresolved. We hypothesised the existence of distinct human pain clusters (PCs) composed of distinct psychophysiological and genetic profiles coupled with differences in the perception and the brain processing of pain. We studied 120 healthy subjects in whom the baseline personality and anxiety traits and the serotonin transporter-linked polymorphic region (5-HTTLPR) genotype were measured. Real-time autonomic nervous system parameters and serum cortisol were measured at baseline and after standardised visceral and somatic pain stimuli. Brain processing reactions to visceral pain were studied in 29 subjects using functional magnetic resonance imaging (fMRI). The reproducibility of the psychophysiological responses to pain was assessed at 1 year. In group analysis, visceral and somatic pain caused an expected increase in sympathetic and cortisol responses and activated the pain matrix according to fMRI studies. However, using cluster analysis, we found 2 reproducible PCs: at baseline, PC1 had higher neuroticism/anxiety scores (P ≤ 0.01); greater sympathetic tone (P < 0.05); and higher cortisol levels (P ≤ 0.001). During pain, less stimulus was tolerated (P ≤ 0.01), and there was an increase in parasympathetic tone (P ≤ 0.05). The 5-HTTLPR short allele was over-represented (P ≤ 0.005). PC2 had the converse profile at baseline and during pain. Brain activity differed (P ≤ 0.001); greater activity occurred in the left frontal cortex in PC1, whereas PC2 showed greater activity in the right medial/frontal cortex and right anterior insula. In health, 2 distinct reproducible PCs exist in humans. In the future, PC characterization may help to identify subjects at risk for developing chronic pain and may reduce variability in brain imaging studies. © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Much of the research on visual hallucinations (VHs) has been conducted in the context of eye disease and neurodegenerative conditions, but little is known about these phenomena in psychiatric and nonclinical populations. The purpose of this article is to bring together current knowledge regarding VHs in the psychosis phenotype and contrast this data with the literature drawn from neurodegenerative disorders and eye disease. The evidence challenges the traditional views that VHs are atypical or uncommon in psychosis. The weighted mean for VHs is 27% in schizophrenia, 15% in affective psychosis, and 7.3% in the general community. VHs are linked to a more severe psychopathological profile and less favorable outcome in psychosis and neurodegenerative conditions. VHs typically co-occur with auditory hallucinations, suggesting a common etiological cause. VHs in psychosis are also remarkably complex, negative in content, and are interpreted to have personal relevance. The cognitive mechanisms of VHs in psychosis have rarely been investigated, but existing studies point to source-monitoring deficits and distortions in top-down mechanisms, although evidence for visual processing deficits, which feature strongly in the organic literature, is lacking. Brain imaging studies point to the activation of visual cortex during hallucinations on a background of structural and connectivity changes within wider brain networks. The relationship between VHs in psychosis, eye disease, and neurodegeneration remains unclear, although the pattern of similarities and differences described in this review suggests that comparative studies may have potentially important clinical and theoretical implications. © 2014 The Author.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Because of attentional limitations, the human visual system can process for awareness and response only a fraction of the input received. Lesion and functional imaging studies have identified frontal, temporal, and parietal areas as playing a major role in the attentional control of visual processing, but very little is known about how these areas interact to form a dynamic attentional network. We hypothesized that the network communicates by means of neural phase synchronization, and we used magnetoencephalography to study transient long-range interarea phase coupling in a well studied attentionally taxing dual-target task (attentional blink). Our results reveal that communication within the fronto-parieto-temporal attentional network proceeds via transient long-range phase synchronization in the beta band. Changes in synchronization reflect changes in the attentional demands of the task and are directly related to behavioral performance. Thus, we show how attentional limitations arise from the way in which the subsystems of the attentional network interact. The human brain faces an inestimable task of reducing a potentially overloading amount of input into a manageable flow of information that reflects both the current needs of the organism and the external demands placed on it. This task is accomplished via a ubiquitous construct known as “attention,” whose mechanism, although well characterized behaviorally, is far from understood at the neurophysiological level. Whereas attempts to identify particular neural structures involved in the operation of attention have met with considerable success (1-5) and have resulted in the identification of frontal, parietal, and temporal regions, far less is known about the interaction among these structures in a way that can account for the task-dependent successes and failures of attention. The goal of the present research was, thus, to unravel the means by which the subsystems making up the human attentional network communicate and to relate the temporal dynamics of their communication to observed attentional limitations in humans. A prime candidate for communication among distributed systems in the human brain is neural synchronization (for review, see ref. 6). Indeed, a number of studies provide converging evidence that long-range interarea communication is related to synchronized oscillatory activity (refs. 7-14; for review, see ref. 15). To determine whether neural synchronization plays a role in attentional control, we placed humans in an attentionally demanding task and used magnetoencephalography (MEG) to track interarea communication by means of neural synchronization. In particular, we presented 10 healthy subjects with two visual target letters embedded in streams of 13 distractor letters, appearing at a rate of seven per second. The targets were separated in time by a single distractor. This condition leads to the “attentional blink” (AB), a well studied dual-task phenomenon showing the reduced ability to report the second of two targets when an interval <500 ms separates them (16-18). Importantly, the AB does not prevent perceptual processing of missed target stimuli but only their conscious report (19), demonstrating the attentional nature of this effect and making it a good candidate for the purpose of our investigation. Although numerous studies have investigated factors, e.g., stimulus and timing parameters, that manipulate the magnitude of a particular AB outcome, few have sought to characterize the neural state under which “standard” AB parameters produce an inability to report the second target on some trials but not others. We hypothesized that the different attentional states leading to different behavioral outcomes (second target reported correctly or not) are characterized by specific patterns of transient long-range synchronization between brain areas involved in target processing. Showing the hypothesized correspondence between states of neural synchronization and human behavior in an attentional task entails two demonstrations. First, it needs to be demonstrated that cortical areas that are suspected to be involved in visual-attention tasks, and the AB in particular, interact by means of neural synchronization. This demonstration is particularly important because previous brain-imaging studies (e.g., ref. 5) only showed that the respective areas are active within a rather large time window in the same task and not that they are concurrently active and actually create an interactive network. Second, it needs to be demonstrated that the pattern of neural synchronization is sensitive to the behavioral outcome; specifically, the ability to correctly identify the second of two rapidly succeeding visual targets

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Multiple transformative forces target marketing, many of which derive from new technologies that allow us to sample thinking in real time (i.e., brain imaging), or to look at large aggregations of decisions (i.e., big data). There has been an inclination to refer to the intersection of these technologies with the general topic of marketing as “neuromarketing”. There has not been a serious effort to frame neuromarketing, which is the goal of this paper. Neuromarketing can be compared to neuroeconomics, wherein neuroeconomics is generally focused on how individuals make “choices”, and represent distributions of choices. Neuromarketing, in contrast, focuses on how a distribution of choices can be shifted or “influenced”, which can occur at multiple “scales” of behavior (e.g., individual, group, or market/society). Given influence can affect choice through many cognitive modalities, and not just that of valuation of choice options, a science of influence also implies a need to develop a model of cognitive function integrating attention, memory, and reward/aversion function. The paper concludes with a brief description of three domains of neuromarketing application for studying influence, and their caveats.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Photoacoustic tomography (PAT) is an emerging imaging modality that shows great potential for preclinical research and clinical practice. As a hybrid technique, PAT is based on the acoustic detection of optical absorption from either endogenous chromophores, such as oxy-hemoglobin and deoxy-hemoglobin, or exogenous contrast agents, such as organic dyes and nanoparticles. Because ultrasound scatters much less than light in tissue, PAT generates high-resolution images in both the optical ballistic and diffusive regimes. Over the past decade, the photoacoustic technique has been evolving rapidly, leading to a variety of exciting discoveries and applications. This review covers the basic principles of PAT and its different implementations. Strengths of PAT are highlighted, along with the most recent imaging results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Posterior reversible encephalopathy syndrome (PRES) is a clinico-neuro-radiological diagnosis, which can complicate a wide range of conditions. Clinical features include generalised and/or focal neurological deficits. These features are also present in neurovascular disorders, such as stroke. Currently, emphasis in the management of hyperacute stroke is thrombolysis, and it is important to bear in mind stroke mimics as a possible cause of clinical features. The Authors present the case of a 66-year-old man, who presented with acute focal neurological deficit. His brain imaging and history were consistent with PRES.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstract: Medical image processing in general and brain image processing in particular are computationally intensive tasks. Luckily, their use can be liberalized by means of techniques such as GPU programming. In this article we study NiftyReg, a brain image processing library with a GPU implementation using CUDA, and analyse different possible ways of further optimising the existing codes. We will focus on fully using the memory hierarchy and on exploiting the computational power of the CPU. The ideas that lead us towards the different attempts to change and optimize the code will be shown as hypotheses, which we will then test empirically using the results obtained from running the application. Finally, for each set of related optimizations we will study the validity of the obtained results in terms of both performance and the accuracy of the resulting images.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

International audience

Relevância:

60.00% 60.00%

Publicador:

Resumo:

International audience