977 resultados para Aneis (Algebra)
Resumo:
Under the assumption that c is a regular cardinal, we prove the existence and uniqueness of a Boolean algebra B of size c defined by sharing the main structural properties that P(omega)/fin has under CH and in the N(2)-Cohen model. We prove a similar result in the category of Banach spaces. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Approximate Lie symmetries of the Navier-Stokes equations are used for the applications to scaling phenomenon arising in turbulence. In particular, we show that the Lie symmetries of the Euler equations are inherited by the Navier-Stokes equations in the form of approximate symmetries that allows to involve the Reynolds number dependence into scaling laws. Moreover, the optimal systems of all finite-dimensional Lie subalgebras of the approximate symmetry transformations of the Navier-Stokes are constructed. We show how the scaling groups obtained can be used to introduce the Reynolds number dependence into scaling laws explicitly for stationary parallel turbulent shear flows. This is demonstrated in the framework of a new approach to derive scaling laws based on symmetry analysis [11]-[13].
Resumo:
We classify groups G such that the unit group U-1 (ZG) is hypercentral. In the second part, we classify groups G whose modular group algebra has hyperbolic unit groups U-1 (KG).
Resumo:
We construct five new elements of degree 6 in the nucleus of the free alternative algebra. We use the representation theory of the symmetric group to locate the elements. We use the computer algebra system ALBERT and an extension of ALBERT to express the elements in compact form and to show that these new elements are not a consequence of the known clegree-5 elements in the nucleus. We prove that these five new elements and four known elements form a basis for the subspace of nuclear elements of degree 6. Our calculations are done using modular arithmetic to save memory and time. The calculations can be done in characteristic zero or any prime greater than 6, and similar results are expected. We generated the nuclear elements using prime 103. We check our answer using five other primes.
Resumo:
We classify all unital subalgebras of the Cayley algebra O(q) over the finite field F(q), q = p(n). We obtain the number of subalgebras of each type and prove that all isomorphic subalgebras are conjugate with respect to the automorphism group of O(q). We also determine the structure of the Moufang loops associated with each subalgebra of O(q).
Resumo:
In this paper we construct two free field realizations of the elliptic affine Lie algebra sl(2, R) circle plus Omega(R)/dR where R = C[t. t(-1), u vertical bar u(2) = t(3) - 2bt(2) + t]. The first realization provides an analogue of Wakimoto`s construction for Affine Kac-Moody algebras, but in the setting of the elliptic affine Lie algebra. The second realization gives new types of representations analogous to Imaginary Verma modules in the Affine setting. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
The aim of this thesis is to look for signs of students’ understanding of algebra by studying how they make the transition from arithmetic to algebra. Students in an Upper Secondary class on the Natural Science program and Science and Technology program were given a questionnaire with a number of algebraic problems of different levels of difficulty. Especially important for the study was that students leave comments and explanations of how they solved the problems. According to earlier research, transitions are the most critical steps in problem solving. The Algebraic Cycle is a theoretical tool that can be used to make different phases in problem solving visible. To formulate and communicate how the solution was made may lead to students becoming more aware of their thought processes. This may contribute to students gaining more understanding of the different phases involved in mathematical problem solving, and to students becoming more successful in mathematics in general.The study showed that the students could solve mathematical problems correctly, but that they in just over 50% of the cases, did not give any explanations to their solutions.
Resumo:
Syftet med den här uppsatsen är att undersöka elevers uppfattningar om algebra och problemlösning samt granska hur dessa uppfattningar påverkas beroende på elevernas val av gymnasieprogram, kön och slutbetyg i grundskolan. Syftet är vidare att ta reda på vilka eventuella hinder och svårigheter eleverna själva uppfattar då de använder algebra för att lösa matematiska problem. Som metod för att söka svar på syfte och frågeställningar har valts att genomföra en enkätundersökning med elever som går första året på gymnasiet och som läser antingen naturvetenskapsprogrammet eller bygg- och anläggningsprogrammet. Enkätundersökningen består av två delar, en del som undersöker elevers uppfattningar om matematik i allmänhet och algebra och problemlösning i synnerhet, samt en del som försöker reda ut vilka svårigheter eleverna uppfattar då de ska lösa matematiska problem med algebra. Svaren sammanställs genom en analys av vilka eventuella skillnader och likheter som finns beroende på elevernas val av gymnasieprogram, kön och betyg i grundskolan. Resultatet visar på att elever på naturvetenskapsprogrammet som hade MVG i betyg i grundskolan har en mer positiv inställning till algebra och problemlösning i jämförelse med elever från bygg- och anläggningsprogrammet som fått G i betyg. Vad gäller elevernas kön finns det inte några indikationer på att denna faktor har någon större påverkan på deras uppfattningar. Resultatet kan vara en indikation på att elevernas uppfattningar främst påverkas av deras förståelse för det algebraiska tankesättet. Det eleverna upplever som svårast när de ska lösa problem med hjälp av algebra är att översätta den skrivna texten till en algebraisk framställning. När eleverna löser matematiska problem indikerar även resultatet att de till stor del styrs av sina förväntningar och förutfattade föreställningar om uppgiften. Resultatet ger en indikation om att eleverna behöver arbeta mer med problemlösning i olika former för att genom det kunna träna upp sin resonemangsförmåga och sin förmåga att behärska alla de tre faserna, översättning, omskrivning och tolkning, i den algebraiska cykeln.
Resumo:
Os autores objetivam, com este trabalho preliminar, bem como com aqueles que lhe darão continuidade, na sequência de composição de um livro de matemática para economistas, registrar as suas experiências ao longo dos últimos anos ministrando cadeiras de matemática nos cursos de pós-graduação em economia da Fundação Getúlio Vargas, da UFF (Universidade Federal Fluminense) e da PUC-RJ. Reveste-se de constante repetição em tais cursos a discussão sobre que pontos abordar, bem como com qual grau de profundidade, e em que ordem. É neste sentido que os autores esperam, com a sequência didática que aqui se inicia, trazer alguma contribuição para o assunto.
Resumo:
We consider a procedure for obtaining a compact fourth order method to the steady 2D Navier-Stokes equations in the streamfunction formulation using the computer algebra system Maple. The resulting code is short and from it we obtain the Fortran program for the method. To test the procedure we have solved many cavity-type problems which include one with an analytical solution and the results are compared with results obtained by second order central differences to moderate Reynolds numbers. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We generalize a procedure proposed by Mancera and Hunt [P.F.A. Mancera, R. Hunt, Some experiments with high order compact methods using a computer algebra software-Part 1, Appl. Math. Comput., in press, doi: 10.1016/j.amc.2005.05.015] for obtaining a compact fourth-order method to the steady 2D Navier-Stokes equations in the streamfunction formulation-vorticity using the computer algebra system Maple, which includes conformal mappings and non-uniform grids. To analyse the procedure we have solved a constricted stepped channel problem, where a fine grid is placed near the re-entrant corner by transformation of the independent variables. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
This paper is concerned with a link between central extensions of N = 2 superconformal algebra and a supersymmetric two-component generalization of the Camassa-Holm equation. Deformations of superconformal algebra give rise to two compatible bracket structures. One of the bracket structures is derived from the central extension and admits a momentum operator which agrees with the Sobolev norm of a co-adjoint orbit element. The momentum operator induces, via Lenard relations, a chain of conserved Hamiltonians of the resulting supersymmetric Camassa-Holm hierarchy.
Resumo:
Applied to the electroweak interactions, the theory of Lie algebra extensions suggests a mechanism by which the boson masses are generated without resource to spontaneous symmetry breaking. It starts from a gauge theory without any additional scalar field. All the couplings predicted by the Weinberg-Salam theory are present, and a few others which are nevertheless consistent within the model.