935 resultados para Amplicon sequencing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The advent of next generation sequencing technologies (NGS) has expanded the area of genomic research, offering high coverage and increased sensitivity over older microarray platforms. Although the current cost of next generation sequencing is still exceeding that of microarray approaches, the rapid advances in NGS will likely make it the platform of choice for future research in differential gene expression. Connectivity mapping is a procedure for examining the connections among diseases, genes and drugs by differential gene expression initially based on microarray technology, with which a large collection of compound-induced reference gene expression profiles have been accumulated. In this work, we aim to test the feasibility of incorporating NGS RNA-Seq data into the current connectivity mapping framework by utilizing the microarray based reference profiles and the construction of a differentially expressed gene signature from a NGS dataset. This would allow for the establishment of connections between the NGS gene signature and those microarray reference profiles, alleviating the associated incurring cost of re-creating drug profiles with NGS technology. We examined the connectivity mapping approach on a publicly available NGS dataset with androgen stimulation of LNCaP cells in order to extract candidate compounds that could inhibit the proliferative phenotype of LNCaP cells and to elucidate their potential in a laboratory setting. In addition, we also analyzed an independent microarray dataset of similar experimental settings. We found a high level of concordance between the top compounds identified using the gene signatures from the two datasets. The nicotine derivative cotinine was returned as the top candidate among the overlapping compounds with potential to suppress this proliferative phenotype. Subsequent lab experiments validated this connectivity mapping hit, showing that cotinine inhibits cell proliferation in an androgen dependent manner. Thus the results in this study suggest a promising prospect of integrating NGS data with connectivity mapping. © 2013 McArt et al.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Next Generation Sequencing (NGS) has the potential of becoming an important tool in clinical diagnosis and therapeutic decision-making in oncology owing to its enhanced sensitivity in DNA mutation detection, fast-turnaround of samples in comparison to current gold standard methods and the potential to sequence a large number of cancer-driving genes at the one time. We aim to test the diagnostic accuracy of current NGS technology in the analysis of mutations that represent current standard-of-care, and its reliability to generate concomitant information on other key genes in human oncogenesis. Thirteen clinical samples (8 lung adenocarcinomas, 3 colon carcinomas and 2 malignant melanomas) already genotyped for EGFR, KRAS and BRAF mutations by current standard-of-care methods (Sanger Sequencing and q-PCR), were analysed for detection of mutations in the same three genes using two NGS platforms and an additional 43 genes with one of these platforms. The results were analysed using closed platform-specific proprietary bioinformatics software as well as open third party applications. Our results indicate that the existing format of the NGS technology performed well in detecting the clinically relevant mutations stated above but may not be reliable for a broader unsupervised analysis of the wider genome in its current design. Our study represents a diagnostically lead validation of the major strengths and weaknesses of this technology before consideration for diagnostic use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Retinitis pigmentosa (RP) is a devastating form of retinal degeneration, with significant social and professional consequences. Molecular genetic information is invaluable for an accurate clinical diagnosis of RP due to its high genetic and clinical heterogeneity. Using a gene capture panel that covers 163 of the currently known retinal disease genes, including 48 RP genes, we performed a comprehensive molecular screening in a collection of 123 RP unsettled probands from a wide variety of ethnic backgrounds, including 113 unrelated simplex and 10 autosomal recessive RP (arRP) cases. As a result, 61 mutations were identified in 45 probands, including 38 novel pathogenic alleles. Interestingly, we observed that phenotype and genotype were not in full agreement in 21 probands. Among them, eight probands were clinically reassessed, resulting in refinement of clinical diagnoses for six of these patients. Finally, recessive mutations in CLN3 were identified in five retinal degeneration patients, including four RP probands and one cone-rod dystrophy patient, suggesting that CLN3 is a novel non-syndromic retinal disease gene. Collectively, our results underscore that, due to the high molecular and clinical heterogeneity of RP, comprehensive screening of all retinal disease genes is effective in identifying novel pathogenic mutations and provides an opportunity to discover new genotype-phenotype correlations. Information gained from this genetic screening will directly aid in patient diagnosis, prognosis, and treatment, as well as allowing appropriate family planning and counseling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose:The aim of this study was to determine whether mutations in mitochondrial DNA play a role in high-pressure primary open-angle glaucoma (OMIM 137760) by analyzing new data from massively parallel sequencing of mitochondrial DNA.
Methods:Glaucoma patients with high-tension primary open-angle glaucoma and ethnically matched and age-matched control subjects without glaucoma were recruited. The entire human mitochondrial genome was amplified in two overlapping fragments by long-range polymerase chain reaction and used as a template for massively parallel sequencing on an Ion Torrent Personal Genome Machine. All variants were confirmed by conventional Sanger sequencing.
Results:Whole-mitochondrial genome sequencing was performed in 32 patients with primary open-angle glaucoma from India (n = 16) and Ireland (n = 16). In 16 of the 32 patients with primary open-angle glaucoma (50% of cases), there were 22 mitochondrial DNA mutations consisting of 7 novel mutations and 8 previously reported disease-associated sequence variants. Eight of 22 (36.4%) of the mitochondrial DNA mutations were in complex I mitochondrial genes.
Conclusion:Massively parallel sequencing using the Ion Torrent Personal Genome Machine with confirmation by Sanger sequencing detected a pathogenic mitochondrial DNA mutation in 50% of the primary open-angle glaucoma cohort. Our findings support the emerging concept that mitochondrial dysfunction results in the development of glaucoma and, more specifically, that complex I defects play a significant role in primary open-angle glaucoma pathogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kidneys are highly aerobic organs that are critically dependent on the normal functioning of mitochondria. Genetic variations disrupting mitochondrial function are associated with multifactorial disorders including kidney disease. This study sequenced the entire mitochondrial genome in a renal transplant cohort of 64 individuals, using next-generation sequencing, to evaluate the association of genetic variants with IgA nephropathy and end-stage renal disease (ESRD, n = 100).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Retinitis pigmentosa (RP) is a group of inherited retinal disorders characterized by progressive photoreceptor degeneration. An accurate molecular diagnosis is essential for disease characterization and clinical prognoses. A retinal capture panel that enriches 186 known retinal disease genes, including 55 known RP genes, was developed. Targeted next-generation sequencing was performed for a cohort of 82 unrelated RP cases from Northern Ireland, including 46 simplex cases and 36 familial cases. Disease-causing mutations were identified in 49 probands, including 28 simplex cases and 21 familial cases, achieving a solving rate of 60 %. In total, 65 pathogenic mutations were found, and 29 of these were novel. Interestingly, the molecular information of 12 probands was neither consistent with their initial inheritance pattern nor clinical diagnosis. Further clinical reassessment resulted in a refinement of the clinical diagnosis in 11 patients. This is the first study to apply next-generation sequencing-based, comprehensive molecular diagnoses to a large number of RP probands from Northern Ireland. Our study shows that molecular information can aid clinical diagnosis, potentially changing treatment options, current family counseling and management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Next-generation sequencing (NGS) is beginning to show its full potential for diagnostic and therapeutic applications. In particular, it is enunciating its capacity to contribute to a molecular taxonomy of cancer, to be used as a standard approach for diagnostic mutation detection, and to open new treatment options that are not exclusively organ-specific. If this is the case, how much validation is necessary and what should be the validation strategy, when bringing NGS into the diagnostic/clinical practice? This validation strategy should address key issues such as: what is the overall extent of the validation? Should essential indicators of test performance such as sensitivity of specificity be calculated for every target or sample type? Should bioinformatic interpretation approaches be validated with the same rigour? What is a competitive clinical turnaround time for a NGS-based test, and when does it become a cost-effective testing proposition? While we address these and other related topics in this commentary, we also suggest that a single set of international guidelines for the validation and use of NGS technology in routine diagnostics may allow us all to make a much more effective use of resources.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The liver fluke, Fasciola hepatica is an economically important pathogen of sheep and cattle and has been described by the WHO as a re-emerging zoonosis. Control is heavily reliant on the use of drugs, particularly triclabendazole and as a result resistance has now emerged. The population structure of F. hepatica is not well known, yet it can impact on host-parasite interactions and parasite control with drugs, particularly regarding the spread of triclabendazole resistance. We have identified 2448 potential microsatellites from 83Mb of F. hepatica genome sequence using msatfinder. Thirty-five loci were developed and optimised for microsatellite PCR, resulting in a panel of 15 polymorphic loci, with a range of three to 15 alleles. This panel was validated on genomic DNA from 46 adult F. hepatica; 38 liver flukes sourced from a Northwest abattoir, UK and 8 liver flukes from an established isolate (Shrewsbury; Ridgeway Research). Evidence for null alleles was found at four loci (Fh_1, Fh_8, Fh_13 and Fh_14), which showed markedly higher levels of homozygosity than the remaining 11 loci. Of the 38 liver flukes isolated from cattle livers (n=10) at the abattoir, 37 genotypes were identified. Using a multiplex approach all 15 loci could be amplified from several life cycle stages that typically yield low amounts of DNA, including metacercariae, the infective life cycle stage present on pasture, highlighting the utility of this multiplex microsatellite panel. This study reports the largest panel of microsatellite markers available to date for population studies of F. hepatica and the first multiplex panel of microsatellite markers that can be used for several life cycle stages.