921 resultados para Aluminum phosphate


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Al13 pillared montmorillonites (AlPMts) prepared with different Al/clay ratios were used to remove Cd(II) and phosphate from aqueous solution. The structure of AlPMts was characterized by X-ray diffraction (XRD), Thermogravimetric analysis (TG), and N2 adsorption–desorption. The basal spacing, intercalated amount of Al13 cations, and specific surface area of AlPMts increased with the increase of the Al/clay ratio. In the single adsorption system, with the increase of the Al/clay ratio, the adsorption of phosphate on AlPMts increased but that of Cd(II) decreased. Significantly enhanced adsorptions of Cd(II) and phosphate on AlPMts were observed in a simultaneous system. For both contaminants, the adsorption of one contaminant would increase with the increase of the initial concentration of the other one and increase in the Al/clay ratio. The enhancement of the adsorption of Cd(II) was much higher than that of phosphate on AlPMt. This suggests that the intercalated Al13 cations are the primary co-adsorption sites for phosphate and Cd(II). X-ray photoelectron spectroscopy (XPS) indicated comparable binding energy of P2p but a different binding energy of Cd3d in single and simultaneous systems. The adsorption and XPS results suggested that the formation of P-bridge ternary surface complexes was the possible adsorption mechanism for promoted uptake of Cd(II) and phosphate on AlPMt.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanism of fire retardant action of mono- and diammonium phosphates on polystyrene has been investigated. Ignition delay and mass burning rate studies reveal that the phosphates bring down both parameters considerably though to different extents. This has been adequately explained on the basis of the existing combustion models and physicochemical behavior of the material. Similar to their action on cellulosic materials, phosphates bring about fire retardancy in polystyrene via char formation. This is suggested to occur through a series of processes consisting of initial peroxide formation, decomposition to alcohols and aldehydes, formation of alkyl-phosphate esters, dehydration and subsequent char formation. Infrared and mass spectral studies support this mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract is not available.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nutrition affects bone health throughout life. To optimize peak bone mass development and maintenance, it is important to pay attention to the dietary factors that enhance and impair bone metabolism. In this study, the in vivo effects of inorganic dietary phosphate and the in vitro effects of bioactive tripeptides, IPP, VPP and LKP were investigated. Dietary phosphate intake is increased through the use of convenience foods and soft drinks rich in phosphate-containing food additives. Our results show that increased dietary phosphate intake hinders mineral deposition in cortical bone and diminishes bone mineral density (BMD) in the aged skeleton in a rodent model (Study I). In the growing skeleton (Study II), increased phosphate intake was observed to reduce bone material and structural properties, leading to diminished bone strength. Studies I and II revealed that a low Ca:P ratio has negative effects on the mature and growing rat skeleton even when calcium intake is sufficient. High dietary protein intake is beneficial for bone health. Protein is essential for bone turnover and matrix formation. In addition, hydrolysis of proteins in the gastrointestinal tract produces short peptides that possess a biological function beyond that of being tissue building blocks. The effects of three bioactive tripeptides, IPP, VPP and LKP, were assessed in short- and long-term in vitro experiments. Short-term treatment (24 h) with tripeptide IPP, VPP or LKP influenced osteoblast gene expression (Study III). IPP in particular, regulates genes associated with cell differentiation, cell growth and cell signal transduction. The upregulation of these genes indicates that IPP enhances osteoblast proliferation and differentiation. Long-term treatment with IPP enhanced osteoblast gene expression in favour of bone formation and increased mineralization (Study IV). The in vivo effects of IPP on osteoblast differentiation might differ since eating frequency drives food consumption, and protein degradation products, such as bioactive peptides, are available periodically, not continuously as in this study. To sum up, Studies I and II raise concern about the appropriate amount of dietary phosphate to support bone health as excess is harmful. Studies III and IV in turn, support findings of the beneficial effects of dietary protein on bone and provide a mechanistic explanation since cell proliferation and osteoblast function were improved by treatment with bioactive tripeptide IPP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RECENT crystallographic studies of the dinucleosides ApU (ref. 1) and GpC (ref. 2) have given experimental proof for the base pairing arrangement proposed by Watson and Crick for the DNA double helix3. Another striking feature of this structure relates to the torsional angle about the C5'-C4' bond in the phosphate−sugar backbone chain. In the Crick and Watson model4, this conformation is gauche−trans (GT). Crystal structures of 5'-nucleotides, dinucleosides and dinucleotides so far studied, however, have shown only the gauche−gauche (GG) conformation about this bond. The GG conformer is also the only one found in the refined models of the proposed structure of the double helical nucleic acids and polynucleotides5−7. The only nucleotide with a GT conformation is 6-azauridine-5'-phosphate8 which is not a normal monomer unit of nucleic acids. It is also reported that 5'-dGMP assumes preferentially GT conformation in solution9.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aluminum-silicon alloy pins were slid against steel disks under nominally dry condition at a speed of 0.6 m s-1. Each pin was slid at a constant load for 5 min, the load being increased in suitable steps from 2 to 65 N. The results show the wear to increase almost monotonically with load, to be sensitive to the presence of silicon in the alloy, and to be insensitive to actual silicon content. The monotonic nature of wear rate-load characteristic suggests that one dominant wear mechanism prevails over the load range studied. Morphological studies of the pin surface and the debris support this contention and point to delamination as being the dominant mode of wear.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

C6H11o9P2-.Ba2+.7H2o, M, = 521.5, is monoclinic, space group P21, a = 11.881 (4), b = 8.616 (5), c = 8.350 (4) A,B = 102.95 (3)0, Z = 2, U = 833.0 A 3, d m = 2.09, d c = 2.08 Mg m -3, F(000) = 516. Mo Ka (u = 0.034 mm -1) intensity data. R is 0.068 for 1603 reflections. Of the two endocyclic C-O bonds in the glucose ring, C(5)-O(5) [1.463 (23)] is longer than C(1)-O(5) [1.395 (23)A]. The pyranose sugar ring takes a 4C1 chair conformation. The Cremer-Pople puckering parameters are, 0 = 6.69 o, Q = 0.619 A and 0 = 263.7o. The conformation about the exocyclic C(5)-C(6) bond is gauche-gauche, in contrast to gauche-trans observed in the structure of glucose 1-phosphate. The phosphate ester bond, P-O(6), is 1.61 (1)A. It is similar in length to the 'high-energy' P~O bond in phosphoenolpyruvate. The Ba 2÷ ion is surrounded by nine O atoms within a distance of 2.95 A, of which seven are from water molecules. There is an intramolecular hydrogen bond between the sugar hydroxyl 0(4) and phosphate oxygen O(12).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The evolution of crystallographic texture has been comprehensively studied for commercially pure Al as a function of amount of ECAE deformation for the three major routes of ECAE processing. It has been observed that processing through different routes leads to different type of texture, in both qualitative as well as quantitative sense. The results have been analyzed on the basis of existing concepts on ECAE deformation and simulations have been carried out using the simple shear model of ECAE implemented into the Viscoplastic Self Consistent model of polycrystal plasticity. The simulations revealed that non-octahedral slip is needed to reproduce the experimental texture development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyethene, polyacrylates and polymethyl acrylates are versatile materials that find wide variety of applications in several areas. Therefore, polymerization of ethene, acrylates and methacrylates has achieved a lot attention during past years. Numbers of metal catalysts have been introduced in order to control the polymerization and to produce tailored polymer structures. Herein an overview on the possible polymerization pathways for ethene, acrylates and methacrylates is presented. In this thesis iron(II) and cobalt(II) complexes bearing tri- and tetradentate nitrogen ligands were synthesized and studied in the polymerization of tertbutyl acrylate (tBA) and methyl methacrylate (MMA). Complexes are activated with methylaluminoxane (MAO) before they form active combinations for polymerization reactions. The effect of reaction conditions, i.e. monomer concentration, reaction time, temperature, MAO to metal ratio, on activity and polymer properties were investigated. The described polymerization system enables mild reaction conditions, the possibility to tailor molar mass of the produced polymers and provides good control over the polymerization. Moreover, the polymerization of MMA in the presence of iron(II) complex with tetradentate nitrogen ligands under conditions of atom transfer radical polymerization (ATRP) was studied. Several manganese(II) complexes were studied in the ethene polymerization with combinatorial methods and new active catalysts were found. These complexes were also studied in acrylate and methacrylate polymerizations after MAO activation and converted into the corresponding alkyl (methyl or benzyl) derivatives. Combinatorial methods were introduced to discover aluminum alkyl complexes for the polymerization of acrylates and methacrylates. Various combinations of aluminum alkyls and ligands, including phosphines, salicylaldimines and nitrogen donor ligands, were prepared in situ and utilized to initiate the polymerization of tBA. Phosphine ligands were found to be the most active and the polymerization MMA was studied with these active combinations. In addition, a plausible polymerization mechanism for MMA based on ESI-MS, 1H and 13C NMR is proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RECENT crystallographic studies of the dinucleosides ApU (ref. 1) and GpC (ref. 2) have given experimental proof for the base pairing arrangement proposed by Watson and Crick for the DNA double helix3. Another striking feature of this structure relates to the torsional angle about the C5'-C4' bond in the phosphate−sugar backbone chain. In the Crick and Watson model4, this conformation is gauche−trans (GT). Crystal structures of 5'-nucleotides, dinucleosides and dinucleotides so far studied, however, have shown only the gauche−gauche (GG) conformation about this bond. The GG conformer is also the only one found in the refined models of the proposed structure of the double helical nucleic acids and polynucleotides5−7. The only nucleotide with a GT conformation is 6-azauridine-5'-phosphate8 which is not a normal monomer unit of nucleic acids. It is also reported that 5'-dGMP assumes preferentially GT conformation in solution9.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CRYSTAL structure determinations of nucleic acid fragments have shown that several of the conformational features found in the monomeric building blocks are also manifested at the nucleic acid level. Stereochemical variations between thymine and uracil nucleotides are therefore of interest as they can provide a structural basis for some of the differences between the conformations of DNA and RNA. X-ray studies have so far not shown any major dissimilarities between these two nucleotide species although the sugar ring of deoxyribonucleotides is found to possess greater flexibility than that in ribonucleotides. We report here the molecular structure of deoxyuridine-5'-phosphate (dUMP-5') which is not a common monomer unit of DNAs as it is replaced by its 5-methyl analogue deoxythymidine-5'-phosphate (dTMP-5'). The investigation was undertaken to help determine whether or not this implied a fundamental difference between the geometries of these two molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The damping capacity of cast graphitic aluminum alloy composites has been measured using a torsion pendulum at a constant strain amplitude. It was found that flake-graphite particles dispersed in the matrix of aluminum alloys increased the damping capacity; the improvement was greater, the higher the amount of graphite dispersed in the matrix. At sufficiently high graphite contents the damping capacity of graphitic aluminum composites approaches that of cast iron. The ratio between the damping capacity and the density of graphitic aluminum alloys is higher than cast iron, making them very attractive as light-weight, high-damping materials for possible aircraft applications. Machinability tests on graphite particle-aluminum composites, conducted at speeds of 315 sfm and 525 sfm, showed that the chip length decreased with the amount of graphite of a given size. When the size of graphite was decreased, at a given machining speed, the chip length decreased. Metallographic examination shows that graphite particles act as chip breakers, and are frequently sheared parallel to the plane of the

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acta Crystallographica Section A: Foundations of Crystallography covers theoretical and fundamental aspects of the structure of matter. The journal is the prime forum for research in diffraction physics and the theory of crystallographic structure determination by diffraction methods using X-rays, neutrons and electrons. The structures include periodic and aperiodic crystals, and non-periodic disordered materials, and the corresponding Bragg, satellite and diffuse scattering, thermal motion and symmetry aspects. Spatial resolutions range from the subatomic domain in charge-density studies to nanodimensional imperfections such as dislocations and twin walls. The chemistry encompasses metals, alloys, and inorganic, organic and biological materials. Structure prediction and properties such as the theory of phase transformations are also covered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aluminum-Nickel alloys ranging from 0.06 pct to 6.1 pct (by wt) Ni have been developed for high strength-high conductivity applications. These alloys were produced by solidification in a permanent mold followed by homogenization, hot extrusion or hot rolling and cold drawing to wire form. This sequence of fabrication a) led to the production of fine fibrous dispersoids of NiAl3 as part of the Al-NiAl3 eutectic during the initial casting operation, b) permitted the retention of fine fibrous dispersiods of NiAl3 produced during casting without any significant coarsening during processing and c) led to uniform dispersion and general alignment of these fibrous dispersoids along a given direction in the product without any measurable fiber-matrix separation, extensive fiber-fragmentation or crack production in the matrix. These alloys can be processed to wire form as easily as aluminum and when processed by the above sequence, possess very attractive combination of high strength-high electrical conductivity. Tensile strengths range from 173 N/mm2 (at 0.6 pct Ni) to 241 N/mm2 (at 6.1 pct Ni) in combination with corresponding conductivity values between 62 pct IACS and 55.5 pct IACS. The wires also possess attractive yield strength; for instance, the 0.2 pct off-set strength of Al-6.1 pct Ni wire is 213 N/mm2. Using simple composite rules, the estimated strength and the conductivity of NiAl3 fibers were found to be 1380 N/mm2 and 18 pct IACS respectively, in these wires.