1000 resultados para Age, dated


Relevância:

70.00% 70.00%

Publicador:

Resumo:

In summary, one may conclude that human influence in the Bokanjac area started in the Eneolithic or Earlier Bronze Age - the third to second millennia Cal. BC. Traces of agriculture are weak or missing in the pollen diagram but grazing is indicated. Chestnut and walnut were introduced by humans to the area in classical times. These findings are in general agreement with the results of earlier studies at coastal sites north-west and south-east of Bokanjacko Blato.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A core from the Mid-Atlantic Ridge at 43.5°N and ~3 km water depth shows distinct evidence of the deglacial events known as Heinrich event 1 (probably the marine equivalent of Oldest Dryas cooling in Europe) and the Younger Dryas. The Heinrich event, dated at three levels to between 14.3 and 15.0 ka, is marked by a minimum in foraminifera per gram, by maxima in rates of sedimentation, ice rafted debris per gram, and relative abundance of N. pachyderma (s.), and by a delta18O minimum in planktonic foraminifera. The Younger Dryas event is marked by peak abundance of N. pachyderma (s.) and a planktonic delta18O maximum. Benthic foraminiferal delta13C reaches minimum values during both the Heinrich event and the Younger Dryas. Our data indicate pronounced changes in surface water properties were coupled with reduced production of North Atlantic Deep Water at each of these times.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The deglaciation of the continental shelf to the west of Spitsbergen and the main fjord, Isfjorden, is discussed based on sub-bottom seismic records and sediment cores. The sea floor on the shelf to the west of Isfjorden is underlain by less than 2 m of glaciomarine sediments over a firm diamicton interpreted as till. In central Isfjorden up to 10 m of deglaciation sediments were recorded, whereas in cores from the innermost tributary, Billefjorden, less than a meter of ice proximal sediments was recognized between the till and the 'normal' Holocene marine sediments. We conclude that the Barents Sea Ice Sheet terminated along the shelf break during the Late Weichselian glacial maximum. Radiocarbon dates from the glaciomarine sediments above the till indicate a stepwise deglaciation. Apparently the ice front retreated from the outermost shelf around 14.8 ka. A dramatic increase in the flux of line-grained glaciomarine sediments around 13 ka is assumed to reflect increased melting and/or current activity due to a climatic warming. This second stage of deglaciation was interrupted by a glacial readvance culminating on the mid-shelf area shortly after 12.4 ka. The glacial readvance, which is correlated with a simultaneous readvance of the Fennoscandian ice sheet along the western coast of Norway, is attributed to the so-called 'Older Dryas' cooling event in the North Atlantic region. Following this glacial readvance the outer part of Isfjorden became rapidly deglaciated around 12.3 ka. During the Younger Dryas the inner fjord branches were occupied by large outlet glaciers and possibly the ice front terminated far out in the main fjord. The remnants of the Barents Sea Ice Sheet melted quickly away as a response to the Holocene warming around 10 ka.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Beach and shoreface sediments deposited in the more than 800-km long ice-dammed Lake Komi in northern European Russia have been investigated and dated. The lake flooded the lowland areas between the Barents-Kara Ice Sheet in the north and the continental drainage divide in the south. Shoreline facies have been dated by 18 optical stimulated luminescence (OSL) dates, most of which are closely grouped in the range 80-100 ka, with a mean of 88 +/- 3 ka. This implies that that the Barents-Kara Ice Sheet had its Late Pleistocene maximum extension during the Early Weichselian, probably in the cold interval (Rederstall) between the Brørup and Odderade interstadials of western Europe, correlated with marine isotope stage 5b. This is in strong contrast to the Scandinavian and North American ice sheets, which had their maxima in isotope stage 2, about 20 ka. Field and air photo interpretations suggest that Lake Komi was dammed by the ice advance, which formed the Harbei-Harmon-Sopkay Moraines. These has earlier been correlated with the Markhida moraine across the Pechora River Valley and its western extension. However, OSL dates on fluvial sediments below the Markhida moraine have yielded ages as young as 60 ka. This suggests that the Russian mainland was inundated by two major ice sheet advances from the Barents-Kara seas after the last interglacial: one during the Early Weichselian (about 90 ka) that dammed Lake Komi and one during the Middle Weichselian (about 60 ka). Normal fluvial drainage prevailed during the Late Weichselian, when the ice front was located offshore.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Atmospheric carbon dioxide concentrations were significantly lower during glacial periods than during intervening interglacial periods, but the mechanisms responsible for this difference remain uncertain. Many recent explanations call on greater carbon storage in a poorly ventilated deep ocean during glacial periods (Trancois et al., 1997, doi:10.1038/40073; Toggweiler, 1999, doi:10.1029/1999PA900033; Stephens and Keeling, 2000, doi:10.1038/35004556; Marchitto et al., 2007, doi:10.1126/science.1138679; Sigman and Boyle, 2000, doi:10.1038/35038000), but direct evidence regarding the ventilation and respired carbon content of the glacial deep ocean is sparse and often equivocal (Broecker et al., 2004, doi:10.1126/science.1102293). Here we present sedimentary geochemical records from sites spanning the deep subarctic Pacific that -together with previously published results (Keigwin, 1998, doi:10.1029/98PA00874)- show that a poorly ventilated water mass containing a high concentration of respired carbon dioxide occupied the North Pacific abyss during the Last Glacial Maximum. Despite an inferred increase in deep Southern Ocean ventilation during the first step of the deglaciation (18,000-15,000 years ago) (Marchitto et al., 2007, doi:10.1126/science.1138679; Monnin et al., 2001, doi:10.1126/science.291.5501.112), we find no evidence for improved ventilation in the abyssal subarctic Pacific until a rapid transition ~14,600 years ago: this change was accompanied by an acceleration of export production from the surface waters above but only a small increase in atmospheric carbon dioxide concentration (Monnin et al., 2001, doi:10.1126/science.291.5501.112). We speculate that these changes were mechanistically linked to a roughly coeval increase in deep water formation in the North Atlantic (Robinson et al., 2005, doi:10.1126/science.1114832; Skinner nd Shackleton, 2004, doi:10.1029/2003PA000983; McManus et al., 2004, doi:10.1038/nature02494), which flushed respired carbon dioxide from northern abyssal waters, but also increased the supply of nutrients to the upper ocean, leading to greater carbon dioxide sequestration at mid-depths and stalling the rise of atmospheric carbon dioxide concentrations. Our findings are qualitatively consistent with hypotheses invoking a deglacial flushing of respired carbon dioxide from an isolated, deep ocean reservoir periods (Trancois et al., 1997, doi:10.1038/40073; Toggweiler, 1999, doi:10.1029/1999PA900033; Stephens and Keeling, 2000, doi:10.1038/35004556; Marchitto et al., 2007, doi:10.1126/science.1138679; Sigman and Boyle, 2000, doi:10.1038/35038000; Boyle, 1988, doi:10.1038/331055a0), but suggest that the reservoir may have been released in stages, as vigorous deep water ventilation switched between North Atlantic and Southern Ocean source regions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A high-resolution pollen record from Lake Teletskoye documents the climate-related vegetation history of the northern Altai Mountain region during the last millennium. Siberian pine taiga with Scots pine, fir, spruce, and birch dominated the vegetation between ca. AD 1050 and 1100. The climate was similar to modern. In the beginning of the 12th century, birch and shrub alder increased. Lowered pollen concentrations and simultaneous peaks in herbs (especially Artemisia and Poaceae), ferns, and charcoal fragments point to colder and more arid climate conditions than before, with frequent fire events. Around AD 1200, regional climate became warmer and more humid than present, as revealed by an increase of Siberian pine and decreases of dry herb taxa and charcoal contents. Climatic conditions were rather stable until ca. AD 1410. An increase of Artemisia pollen may reflect slightly drier climate conditions between AD 1410 and 1560. Increases in Alnus, Betula, Artemisia, and Chenopodiaceae pollen and in charcoal particle contents may reflect further deterioration of climate conditions between AD 1560 and 1810, consistent with the Little Ice Age. After AD 1850 the vegetation gradually approached the modern one, in conjunction with ongoing climate warming.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Radiocarbon age differences for pairs of coexisting late glacial age benthic and planktic foraminifera shells handpicked from 10 sediment samples from a core from a depth of 2.8 km in the western equatorial Pacific are not significantly different from that of 1600 years calculated from measurements on prenuclear seawater. This places a lower limit on the depth of the interface for the hypothetical radiocarbon-depleted glacial age seawater reservoir required to explain the 190 per mil drop in the 14C/C for atmospheric CO2, which occurred during the mystery interval (17.5 to 14.5 calendar years ago). These measurements restrict the volume of this reservoir to be no more than 35% that of the ocean. Further, 14C measurements on a single Last Glacial Maximum age sample from a central equatorial Pacific core from a depth of 4.4 km water fail to reveal evidence for the required 5- to 7-kyr age difference between benthic and planktic foraminifera shells if the isolated reservoir occupied only one third of the ocean. Nor does the 13C record for benthic forams from this abyssal core yield any evidence for the excess respiration CO2 expected to be produced during thousands of years of isolation. Nor, as indicated by the presence of benthic foraminifera, was the dissolved oxygen used up in this abyssal water.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Pollen data from a Levinson-Lessing Lake sediment core (74°28'N, 98°38'E) and Cape Sabler, Taymyr Lake permafrost sequences (74°33'N, 100°32'E) reveal substantial environmental changes on the northern Taymyr Peninsula during the last c. 32 000 14C years. The continuous records confirm that a scarce steppe-like vegetation with Poaceae, Artemisia and Cyperaceae dominated c. 32 000-10 300 14C yr BP, while tundra-like vegetation with Oxyria, Ranunculaceae and Caryophyllaceae grew in wetter areas. The coldest interval occurred c. 18 000 yr BP. Lateglacial pollen data show several warming events followed by a climate deterioration c. 10 500 14C yr BP, which may correspond with the Younger Dryas. The Late Pleistocene/Holocene transition, c. 10 300-10 000 14C yr BP, is characterized by a change from the herb-dominated vegetation to shrubby tundra with Betula sect. Nanae and Salix. Alnus fruticosa arrived locally c. 9000-8500 14C yr BP and disappeared c. 4000-3500 14C yr BP. Communities of Betula sect. Nanae, broadly distributed at c. 10 000-3500 14C yr BP, almost disappeared when vegetation became similar to the modern herb tundra after 3500-3000 14C yr BP. Quantitative climate reconstructions show Last Glacial Maximum summer temperature about 4°C below the present and Preboreal (c. 10 000 14C yr BP) temperature 2-4°C above the present. Maximum summer temperature occurred between 10 000 and 5500 14C yr BP; later summers were similar to present or slightly warmer.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Sedimentological, geochemical and paleomagnetic records were employed to reconstruct the history of East Asian Monsoon variability in the South China Sea (SCS) on orbital- and millennial-to-sub-decadal time scales. A detailed magnetostratigraphy for the southern central SCS was established as well as a stable isotope stratigraphy for ODP Site 1144 for the last 1.2 million years in the northern South China Sea. Furthermore a volcanic tephra layer from the southern central SCS could be identified as the Youngest Toba Ash, which thus re-presents an important age marker and was used to reconstruct paleo wind directions during the eruption 74 ka. Special attention was paid to the high- and ultrahigh-frequency variability in the last glacial-interglacial cycle and the Holocene, and to a precise age control of climate changes in general.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Arkhangelsk area lies in the region that was reached by the northeastern flank of the Scandinavian ice sheet during the last glaciation. Investigations of Late Pleistocene sediments show interglacial terrestrial and marine conditions with sea level up to 52 m above the present level. An unconformity in the stratigraphy suggests a hiatus representing the Early Valdaian (Weichselian) and the beginning of the Middle Valdaian. This unconformity could be related to a low base level and isostatic depression of the area north of Arkhangelsk, either caused by ice masses advancing from the Kara and Barents ice sheets and/or to Scandinavian ice over the Kola Peninsula. During Middle Valdaian, from c. 66 ka BP, until the advance of the Late Valdaian glacier, c. 17-16 ka BP, peat formation, and northward fluvial sedimentation occurred coexisting with permafrost conditions in a later phase. Before the glacier advance, the base level rose and thick vertical accumulations of fluvial sediments were formed. Associated with this glacier advance from the north-northwest, ice damming occurred. Fluvial drainage was opposite to the present drainage pattern and deposition appeared in glaciolacustrine ponds in the area outside the limit of the glaciation. After the deglaciation that started c. 15 ka BP, permafrost conditions and downwasting of buried stagnant glacier ice prevailed until at least 10.7 ka BP.