202 resultados para Adrenoceptor
Resumo:
In this study, we investigated the participation of adrenergic neurotransmission in angiotensin II- (ANGII)-induced water intake and urinary electrolyte excretion by means of injection of the alpha(1)-, alpha(2)-, and beta-adrenoceptor antagonists and ANGII into the medial preoptic area (MPOA) in rats. Prazosin (an alpha(1)-adrenergic antagonist) antagonized the water ingestion, Na+, K+ and urine excretion induced by ANGII, whereas yohimbine (an alpha(2)-adrenergic antagonist) enhanced the Na+, K+ and urine excretion induced by ANGII. Propranolol (a nonselective beta-adrenoceptor blocker) antagonized the water ingestion and enhanced the Na+ and urine excretion induced by ANGII. Previous treatment with prazosin reduced the presser responses to ANGII, whereas yohimbine had opposite effects. Previous injection of propranolol produced no effects in the presser responses to ANGII. These results suggest that the adrenergic neurotransmission in the MPOA may actively participate in ANGII-induced dipsogenesis, natriuresis, kaliuresis and diuresis in a process that involves alpha(1)-, alpha(2)-, and beta-adrenoceptors.
Resumo:
The study was performed to examine the responses to catecholamines in vas deferens isolated from rats submitted to acute swimming-induced stress. It was demonstrated that acute stress induces a significant subsensitivity of rat vas deferens to norepinephrine. This subsensitivity was inhibited when the experiment was carried out in the presence of either cocaine (10(-5) M) or timolol (10(-5) M). on the other hand, the rat vas deferens sensitivity to methoxamine was significantly increased by acute swimming-induced stress. Thus, despite acute swimming stress inducing a reduction in response to norepinephrine, the alpha(1)-adrenoceptor-mediated contractile response was increased. Additionally there were increases in neuronal uptake and beta(2)-adrenoceptor activity that opposes the alpha(1)-adrenoceptor activity. Integrated, these phenomena are responsible for the rat vas deferens subsensitivity to norepinephrine which may be involved in body homeostasis in stressogenic situations. (C) 1995 the Italian Pharmacological Society
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We investigated the mechanisms of the alterations in sensitivity to catecholamines in right atria from female rats exhibiting regular 4-day estrous cycles after three foot-shock sessions at estrus, metestrus, and diestrus or at diestrus, proestrus, and estrus. Right atria from stressed rats sacrificed at diestrus showed subsensitivity to noradrenaline and adrenaline. After in vitro sympathetic denervation (38 μM 6-hydroxydopamine) plus inhibition of neuronal reuptake (0.1 μM desipramine) subsensitivity to noradrenaline was abolished, but it was again evident when extraneuronal uptake was also inhibited (10 μM phenoxybenzamine and 30 μM corticosterone). The same pretreatment abolished the subsensitivity to adrenaline. After addition of 1 μM butoxamine, a β2-adrenoceptor antagonist, the tissues from stressed rats were subsensitive to adrenaline. Right atria from stressed rats sacrificed at estrus did not show any alteration in sensitivity to catecholamines. We conclude that after foot-shock stress, right atria from female rats sacrificed at diestrus showed subsensitivity of the chronotropic response to catecholamines as a result of a conformational alteration of β1-adrenoceptors, simultaneously with an increase in β2-adrenoceptor-mediated response. The mechanisms seem to be similar to those which underlie stress-induced alterations in catecholamine sensitivity in right atria from male rats. However, during estrus there are some protective factors that prevent the effects of stress on right atria.
Resumo:
The long-term administration of nitric oxide synthesis inhibitors induces arterial hypertension accompanied by left ventricular hypertrophy and myocardial ischemic lesions. Because the enhancement of sympathetic drive has been implicated in these phenomena, the current study was performed to determine the potency of β-adrenoceptor agonists and muscarinic agonists on the spontaneous rate of isolated right atria from rats given long-term treatment with the nitric oxide inhibitor N(ω)-nitro-L-arginine methyl ester (L-NAME). Atrial lesions induced by long-term treatment with L-NAME were also evaluated. Long-term L-NAME treatment caused a time-dependent, significant (P<0.05) increase in tail-cuff pressure compared with control animals. Our results showed that the potency of isoproterenol, norepinephrine, carbachol, and pilocarpine in isolated right atria from rats given long-term treatment with L-NAME for 7, 15, 30, and 60 days was not affected as compared with control animals. Addition of L-NAME in vitro (100 μmol/L) affected neither basal rate nor chronotropic response for isoproterenol and norepinephrine in rat heart. Stereological analysis of the right atria at 15 and 30 days revealed a significant increase on amount of fibrous tissues in L-NAME- treated groups (27±2.3% and 28±1.3% for 15 and 30 days, respectively; P<0.05) as compared with the control group (22±1.1%). Our results indicate that nitric oxide does not to interfere with β-adrenoceptor-mediated and muscarinic receptor-mediated chronotropic responses.
Resumo:
The biological effects of catecholamines in mammalian pigment cells are poorly understood. Our previous results showed the presence of α1-adrenoceptors in SK-Mel 23 human melanoma cells. The aims of this work were to (1) characterize catecholamine effects on proliferation, tyrosinase activity and expression, (2) identify the α1- adrenoceptor subtypes, and (3) verify whether chronic norepinephrine (NE) treatment modified the types and/or pharmacological characteristics of adrenoceptors present in SK-Mel 23 human melanoma cells. Cells treated with the aradrenergic agonist, phenylephrine (PHE, 10-5 or 10-4 M), for 24-72 h, exhibited decreased cell proliferation and enhanced tyrosinase activity, but unaltered tyrosinase expression as compared with the control. The proliferation and tyrosinase activity responses were inhibited by the α1-adrenergic antagonist prazosin, suggesting they were evoked by α1-adrenoceptors. The presence of actinomycin D, a transcription inhibitor, did not diminish PHE-induced effects. RT-PCR assays, followed by cloning and sequencing, demonstrated the presence of α1A- and α1B-adrenoceptor subtypes. NE-treated cells (24 or 72 h) were used in competition assays, and showed no significant change in the competition curves of α1-adrenoceptors as compared with control curves. Other adrenoceptor subtypes were not identified in these cells, and NE pretreatment did not induce their expression. In conclusion, the activation of SK-Mel 23 human melanoma α1- radrenoceptors elicit biological effects, such as proliferation decrease and tyrosinase activity increase. Desensitization or expression of other adrenoceptor subtypes after chronic NE treatment were not observed.
Resumo:
α2-Adrenoceptor activation with moxonidine (α2-adrenergic/imidazoline receptor agonist) into the lateral parabrachial nucleus (LPBN) enhances angiotensin II/hypovolaemia-induced sodium intake and drives cell dehydrated rats to ingest hypertonic sodium solution besides water. Angiotensin II and osmotic signals are suggested to stimulate meal-induced water intake. Therefore, in the present study we investigated the effects of bilateral injections of moxonidine into the LPBN on food deprivation-induced food intake and on meal-associated water and 0.3 M NaCl intake. Male Holtzman rats with cannulas implanted bilaterally into the LPBN were submitted to 14 or 24 h of food deprivation with water and 0.3 M NaCl available (n = 6-14). Bilateral injections of moxonidine (0.5 nmol/0.2 μl) into the LPBN increased meal-associated 0.3 M NaCl intake (11.4 ± 3.0 ml/120 min versus vehicle: 2.2 ± 0.9 ml/120 min), without changing food intake (11.1 ± 1.2 g/120 min versus vehicle: 11.2 ± 0.9 g/120 min) or water intake (10.2 ± 1.5 ml/120 min versus vehicle: 10.4 ± 1.2 ml/120 min) by 24 h food deprived rats. When no food was available during the test, moxonidine (0.5 nmol) into the LPBN of 24 h food-deprived rats produced no change in 0.3 M NaCl intake (1.0 ± 0.6 ml/120 min versus vehicle: 1.8 ± 1.1 ml/120 min), nor in water intake (0.2 ± 0.1 ml/120 min versus vehicle: 0.6 ± 0.3 ml/120 min). The results suggest that signals generated during a meal, like dehydration, for example, not hunger, induce hypertonic NaCl intake when moxonidine is acting in the LPBN. Thus, activation of LPBN inhibitory mechanisms seems necessary to restrain sodium intake during a meal. © 2007 Elsevier B.V. All rights reserved.
Resumo:
We investigated the effects of doxazosin (Dox), an alpha-adrenoceptor antagonist used clinically for the treatment of benign prostatic hyperplasia (BPH), on the rat prostatic complex by assessing structural parameters, collagen fiber content, cell proliferation, and apoptosis. Adult Wistar rats were treated with Dox (25 mg/kg per day), and the ventral (VP), dorsolateral, and anterior prostate (AP) regions of the prostate complex were excised at 3, 7, and 30 days after treatment. At 24 h before being killed, the rats were injected once with 5-bromodeoxyuridine (BrdU; thymidine analog) to label mitotically active cells. The prostates were weighed and processed for histochemistry, morphometry-stereology, immunohistochemistry for BrdU, Western blotting for proliferating cell nuclear antigen (PCNA), and the TUNEL reaction for apoptosis. Dox-treated prostate lobes at day 3 presented increased weight, an enlarged ductal lumen, low cubical epithelial cells, reduced epithelial folds, and stretched smooth muscle cells. However, at day 30, the prostates exhibited a weight reduction of ∼20% and an increased area of collagen and reticular fibers in the stromal space. Dox also reduced epithelial cell proliferation and increased apoptosis in the three prostatic lobes. Western blotting for PCNA confirmed the reduction of cell proliferation by Dox, with the AP and VP being more affected than the dorsal prostate. Thus, Dox treatment alters epithelial cell behavior and prostatic tissue mechanical demand, inducing tissue remodeling in which collagen fibers assume a major role. © 2007 Springer-Verlag.
Resumo:
Amitraz (AM) and romifidine (RMF), two alpha-2 adrenoceptor agonists, produce sedative effect and decrease spontaneous locomotor activity (SLA) of horses. The behavioral effects and sedation after intravenous injection of RMF (0.06mg/kg) or AM 0.1mg/kg (AM 0.1) or AM 0.4mg/kg (AM 0.4) were compared in horses. RMF caused head ptosis (HP) until 45 min. The lower AM dose induced HP from 45 to 60 minutes and from 120 to 150 minutes, and the higher dose induced HP until 180 minutes. Data concerning changes in SLA were not conclusive. RMF or AM 0.4 caused a greater sedation than AM 0.1 until 20 min. After 20 minutes, the sedation caused by AM 0.4 was greater than that of RMF or AM 0.1. Romifidine caused consistent sedation until 45 minutes. The amitraz emulsion produced a dosedependent sedation until 180 minutes. Comparing to romifidine, the emulsion of amitraz induced a more substantial sedation. At dosages and dilution applied, amitraz is an effective sedative for horses.
Resumo:
Objective: Peripheral treatment with the cholinergic agonist pilocarpine increases salivary gland blood flow and induces intense salivation that is reduced by the central injection of moxonidine (aα-adrenoceptors/ imidazoline agonist). In the present study, we investigated the effects of the intracerebroventricular (i.c.v.) injection of pilocarpine alone or combined with moxonidine also injected i.c.v. On submandibular/sublingual gland (SSG) vascular resistance. In addition, the effects of these treatments on arterial pressure, heart rate and on mesenteric and hindlimb vascular resistance were also tested. Design: Male Holtzman rats with stainless steel cannula implanted into lateral ventricle and anaesthetized with urethane + α-chloralose were used. Results: Pilocarpine (500 nmol/1 μl) injected i.c.v. Reduced SSG vascular resistance and increased arterial pressure, heart rate and mesenteric vascular resistance. Contrary to pilocarpine alone, the combination of moxonidine (20 nmol/1 μl) and pilocarpine injected i.c.v. Increased SSG vascular resistance, an effect abolished by the pre-treatment with the α2-adrenoceptor antagonist yohimbine (320 nmol/2 μl). The increase in arterial pressure, heart rate and mesenteric resistance was not modified by the combination of moxonidine and pilocarpine i.c.v. Conclusion: These results suggest that the activation of central α2- adrenoceptors may oppose to the effects of central cholinergic receptor activation in the SSG vascular resistance. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
Bilateral injections of the GABAA agonist muscimol into the lateral parabrachial nucleus (LPBN) disrupt satiety and induce strong ingestion of water and 0.3M NaCl in fluid-replete rats by mechanisms not completely clear. In the present study, we investigated the effects of the blockade of central muscarinic cholinergic receptors with atropine injected intracerebroventricularly (i.c.v.) on 0.3M NaCl and water intake induced by muscimol injections into the LPBN in fluid-replete rats. Male Holtzman rats with stainless steel cannulas implanted bilaterally into the LPBN and unilaterally into the lateral ventricle (LV) were used. Bilateral injections of muscimol (0.5nmol/0.2μL) into the LPBN induced 0.3M NaCl (32.2±9.9mL/4h, vs. saline: 0.4±0.2mL/4h) and water intake (11.4±4.4mL/4h, vs. saline: 0.8±0.4mL/4h) in fluid-replete rats previously treated with i.c.v. injection of saline. The previous i.c.v. injection of atropine (20nmol/1μL) reduced the effects of LPBN-muscimol on 0.3M NaCl (13.5±5.0mL/4h) and water intake (2.9±1.6mL/4h). The i.c.v. injection of atropine did not affect 0.3M NaCl (26.8±6.2mL/2h, vs. saline i.c.v.: 36.5±9.8mL/2h) or water intake (14.4±2.5mL/2h, vs. saline i.c.v.: 15.6±4.8mL/2h) in rats treated with furosemide+captopril subcutaneously combined with bilateral injections of moxonidine (α2-adrenoceptor/imidazoline agonist, 0.5nmol/0.2μL) into the LPBN, suggesting that the effect of atropine was not due to non-specific inhibition of ingestive behaviors. The results show that active central cholinergic mechanisms are necessary for the hypertonic NaCl and water intake induced by the blockade of the inhibitory mechanisms with injections of muscimol into the LPBN in fluid-replete rats. The suggestion is that in fluid-replete rats the action of LPBN mechanisms inhibits facilitatory signals produced by the activity of central cholinergic mechanisms to maintain satiety. © 2012 Elsevier B.V.
Resumo:
Loss of response on repetitive drug exposure (i.e., tachyphylaxis) is a particular problem for the vasoconstrictor effects of medications containing oxymetazoline (OXY), an α1-adrenoceptor (AR) agonist of the imidazoline class. One cause of tachyphylaxis is receptor desensitization, usually accompanied by phosphorylation and internalization. It is well established that a1A-ARs are less phosphorylated, desensitized, and internalized on exposure to the phenethylamines norepinephrine (NE), epinephrine, or phenylephrine (PE) than are the a1B and a1D subtypes. However, here we show in human embryonic kidney-293 cells that the low-efficacy agonist OXY induces G protein-coupled receptor kinase 2-dependent a1A-AR phosphorylation, followed by rapid desensitization and internalization (∼40% internalization after 5 minutes of stimulation), whereas phosphorylation of α1A-ARs exposed to NE depends to a large extent on protein kinase C activity and is not followed by desensitization, and the receptors undergo delayed internalization (∼35% after 60 minutes of stimulation). Native α1A-ARs from rat tail artery and vas deferens are also desensitized by OXY, but not by NE or PE, indicating that thisproperty of OXY is not limited to recombinant receptors expressed in cell systems. The results of the present study are clearly indicative of agonist-directed a1A-AR regulation. OXY shows functional selectivity relative to NE and PE at a1A-ARs, leading to significant receptor desensitization and internalization, which is important in view of the therapeutic vasoconstrictor effects of this drug and the varied biologic process regulated by α1A-ARs. Copyright © 2013 by The American Society for Pharmacology and Experimental Therapeutics.
Resumo:
The bed nucleus of the stria terminalis (BNST) is a limbic structure that has a direct influence on the autonomic, neuroendocrine, and behavioral responses to stress. It was recently reported that reversible inactivation of synaptic transmission within this structure causes antidepressant-like effects, indicating that activation of the BNST during stressful situations would facilitate the development of behavioral changes related to the neurobiology of depression. Moreover, noradrenergic neurotransmission is abundant in the BNST and has an important role in the regulation of emotional processes related to the stress response. Thus, this study aimed to test the hypothesis that activation of adrenoceptors within the BNST facilitates the development of behavioral consequences of stress. To investigate this hypothesis, male Wistar rats were stressed (forced swimming, 15 min) and 24 h later received intra-BNST injections of vehicle, WB4101, RX821002, CGP20712, or ICI118,551, which are selective α1, α2, β1, and β2 adrenoceptor antagonists, respectively, 10 min before a 5-min forced swimming test. It was observed that administration of WB4101 (10 and 15 nmol), CGP20712 (5 and 10 nmol), or ICI118,551 (5 nmol) into the BNST reduced the immobility time of rats subjected to forced swimming test, indicating an antidepressant-like effect. These findings suggest that activation of α1, β1, and β2 adrenoceptors in the BNST could be involved in the development of the behavioral consequences of stress. © 2013 Wolters Kluwer Health | Lippincott Williams & Wilkins.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)