943 resultados para ATROPHY INVOLVE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE To identify the prevalence and progression of macular atrophy (MA) in neovascular age-related macular degeneration (AMD) patients under long-term anti-vascular endothelial growth factor (VEGF) therapy and to determine risk factors. METHOD This retrospective study included patients with neovascular AMD and ≥30 anti-VEGF injections. Macular atrophy (MA) was measured using near infrared and spectral-domain optical coherence tomography (SD-OCT). Yearly growth rate was estimated using square-root transformation to adjust for baseline area and allow for linearization of growth rate. Multiple regression with Akaike information criterion (AIC) as model selection criterion was used to estimate the influence of various parameters on MA area. RESULTS Forty-nine eyes (47 patients, mean age 77 ± 14) were included with a mean of 48 ± 13 intravitreal anti-VEGF injections (ranibizumab:37 ± 11, aflibercept:11 ± 6, mean number of injections/year 8 ± 2.1) over a mean treatment period of 6.2 ± 1.3 years (range 4-8.5). Mean best-corrected visual acuity improved from 57 ± 17 letters at baseline (= treatment start) to 60 ± 16 letters at last follow-up. The MA prevalence within and outside the choroidal neovascularization (CNV) border at initial measurement was 45% and increased to 74%. Mean MA area increased from 1.8 ± 2.7 mm(2) within and 0.5 ± 0.98 mm(2) outside the CNV boundary to 2.7 ± 3.4 mm(2) and 1.7 ± 1.8 mm(2) , respectively. Multivariate regression determined posterior vitreous detachment (PVD) and presence/development of intraretinal cysts (IRCs) as significant factors for total MA size (R(2) = 0.16, p = 0.02). Macular atrophy (MA) area outside the CNV border was best explained by the presence of reticular pseudodrusen (RPD) and IRC (R(2) = 0.24, p = 0.02). CONCLUSION A majority of patients show MA after long-term anti-VEGF treatment. Reticular pseudodrusen (RPD), IRC and PVD but not number of injections or treatment duration seem to be associated with the MA size.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Distal spinal muscular atrophy is a heterogeneous group of neuromuscular disorders caused by progressive anterior born cell degeneration and characterized by progressive motor weakness and muscular atrophy, predominantly in the distal parts of the limbs. Here we report on chronic autosomal recessive distal spinal muscular atrophy in a large, inbred family with onset at various ages. Because this condition had some of the same clinical features as spinal muscular atrophy with respiratory distress, we tested the disease gene for linkage to chromosome 11q and mapped the disease locus to chromosome 11q13 in the genetic interval that included the spinal muscular atrophy with respiratory distress gene (D11S1889-D11S1321, Z(max) = 4.59 at theta = 0 at locus D11S4136). The sequencing of IGHMBP2, the human homologue of the mouse neuromuscular degeneration gene (nmd) that accounts for spinal muscular atrophy with respiratory distress, failed to detect any mutation in our chronic distal spinal muscular atrophy patients, suggesting that spinal muscular atrophy with respiratory distress and chronic distal spinal muscular atrophy are caused by distinct genes located in the so-me chromosomal region. In addition, the high intrafamilial variability in age at onset raises the question of whether nonallelic modifying genes could be involved in chronic distal spinal muscular atrophy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Study Design. Experimental study of muscle changes after lumbar spinal injury. Objectives. To investigate effects of intervertebral disc and nerve root lesions on cross-sectional area, histology and chemistry of porcine lumbar multifidus. Summary of Background Data. The multifidus cross-sectional area is reduced in acute and chronic low back pain. Although chronic changes are widespread, acute changes at 1 segment are identified within days of injury. It is uncertain whether changes precede or follow injury, or what is the mechanism. Methods. The multifidus cross-sectional area was measured in 21 pigs from L1 to S1 with ultrasound before and 3 or 6 days after lesions: incision into L3 - L4 disc, medial branch transection of the L3 dorsal ramus, and a sham procedure. Samples from L3 to L5 were studied histologically and chemically. Results. The multifidus cross-sectional area was reduced at L4 ipsilateral to disc lesion but at L4 - L6 after nerve lesion. There was no change after sham or on the opposite side. Water and lactate were reduced bilaterally after disc lesion and ipsilateral to nerve lesion. Histology revealed enlargement of adipocytes and clustering of myofibers at multiple levels after disc and nerve lesions. Conclusions. These data resolve the controversy that the multifidus cross-sectional area reduces rapidly after lumbar injury. Changes after disc lesion affect 1 level with a different distribution to denervation. Such changes may be due to disuse following reflex inhibitory mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L’atrofia ottica dominante (ADOA) è una malattia mitocondriale caratterizzata da difetti visivi, che si manifestano durante l’infanzia, causati da progressiva degenerazione delle cellule gangliari della retina (RGC). ADOA è una malattia genetica associata, nella maggior parte dei casi, a mutazioni nel gene OPA1 che codifica per la GTPasi mitocondriale OPA1, appartenente alla famiglia delle dinamine, principalmente coinvolta nel processo di fusione mitocondriale e nel mantenimento del mtDNA. Finora sono state identificate più di 300 mutazioni patologiche nel gene OPA1. Circa il 50% di queste sono mutazioni missenso, localizzate nel dominio GTPasico, che si pensa agiscano come dominanti negative. Questa classe di mutazioni è associata ad una sindrome più grave nota come “ADOA-plus”. Nel lievito Saccharomyces cerevisiae MGM1 è l’ortologo del gene OPA1: nonostante i due geni abbiano domini funzionali identici le sequenze amminoacidiche sono scarsamente conservate. Questo costituisce una limitazione all’uso del lievito per lo studio e la validazione di mutazioni patologiche nel gene OPA1, infatti solo poche sostituzioni possono essere introdotte e studiate nelle corrispettive posizioni del gene di lievito. Per superare questo ostacolo è stato pertanto costruito un nuovo modello di S. cerevisiae, contenente il gene chimerico MGM1/OPA1, in grado di complementare i difetti OXPHOS del mutante mgm1Δ. Questo gene di fusione contiene una larga parte di sequenza corrispondente al gene OPA1, nella quale è stato inserito un set di nuove mutazioni trovate in pazienti affetti da ADOA e ADOA-plus. La patogenicità di queste mutazioni è stata validata sia caratterizzando i difetti fenotipici associati agli alleli mutati, sia la loro dominanza/recessività nel modello di lievito. A tutt’oggi non è stato identificato alcun trattamento farmacologico per la cura di ADOA e ADOA-plus. Per questa ragione abbiamo utilizzato il nostro modello di lievito per la ricerca di molecole che agiscono come soppressori chimici, ossia composti in grado di ripristinare i difetti fenotipici indotti da mutazioni nel gene OPA1. Attraverso uno screening fenotipico high throughput sono state testate due differenti librerie di composti chimici. Questo approccio, noto con il nome di drug discovery, ha permesso l’identificazione di 23 potenziali molecole attive.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To determine the distribution of the pathological changes in the neocortex in multiple-system atrophy (MSA). METHOD: The vertical distribution of the abnormal neurons (neurons with enlarged or atrophic perikarya), surviving neurons, glial cytoplasmic inclusions (GCI) and neuronal cytoplasmic inclusions (NI) were studied in alpha-synuclein-stained material of frontal and temporal cortex in ten cases of MSA. RESULTS: Abnormal neurons exhibited two common patterns of distribution, viz., density was either maximal in the upper cortex or a bimodal distribution was present with a density peak in the upper and lower cortex. The NI were either located in the lower cortex or were more uniformly distributed down the cortical profile. The distribution of the GCI varied considerably between gyri and cases. The density of the glial cell nuclei was maximal in the lower cortex in the majority of gyri. In a number of gyri, there was a positive correlation between the vertical densities of the abnormal neurons, the total number of surviving neurons, and the glial cell nuclei. The vertical densities of the GCI were not correlated with those of the surviving neurons or glial cells but the GCI and NI were positively correlated in a small number of gyri. CONCLUSION: The data suggest that there is significant degeneration of the frontal and temporal lobes in MSA, the lower laminae being affected more significantly than the upper laminae. Cortical degeneration in MSA is likely to be secondary to pathological changes occurring within subcortical areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The density and spatial distribution of the vacuoles, glial cell nuclei and glial cytoplasmic inclusions (GCI) were studied in the white matter of various cortical and subcortical areas in 10 cases of multiple system atrophy (MSA). Vacuolation was more prevalent in subcortical than cortical areas and especially in the central tegmental tract. Glial cell nuclei widespread in all areas of the white matter studied; overall densities of glial cell nuclei being significantly greater in the central tegmental tract and frontal cortex compared with areas of the pons. The GCI were present most consistently in the external and internal capsules, the central tegmental tract and the white matter of the cerebellar cortex. The density of the vacuoles was greater in the MSA brains than in the control brains but glial cell density was similar in both groups. In the majority of areas, the pathological changes were distributed across the white matter randomly, uniformly, or in large diffuse clusters. In most areas, there were no spatial correlations between the vacuoles, glial cell nuclei and GCI. These results suggest: (i) there is significant degeneration of the white matter in MSA characterized by vacuolation and GCI; (ii) the central tegmental tract is affected significantly more than the cortical tracts; (iii) pathological changes are diffusely rather than topographically distributed across the white matter; and (iv) the development of the vacuoles and GCI appear to be unrelated phenomena. © 2007 Japanese Society of Neuropathology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To study the topographic distribution of the pathology in multiple system atrophy (MSA). Pattern analysis was carried out using a-synuclein immunohistochemistry in 10 MSA cases. The glial cytoplasmic inclusions (GCI) were distributed randomly or in large clusters. The neuronal inclusions (NI) and abnormal neurons were distributed in regular clusters. Clusters of the NI and abnormal neurons were spatially correlated whereas the GCI were not spatially correlated with either the NI or the abnormal neurons. The data suggest that the GCI represent the primary change in MSA and the neuronal pathology develops secondary to the glial pathology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The densities of the glial cytoplasmic inclusions (GCI), neuronal inclusions (NI), and abnormal neurons were studied in the frontal cortex, hippocampus, cerebellum, basal ganglia and areas of the pons and medulla in 10 cases of multiple system atrophy (MSA). GCI density was greater in the substantia nigra and globus pallidus compared with the frontal cortex and hippocampus. Abnormal neurons were most abundant in the frontal cortex, substantia nigra, and inferior olivary nucleus. NI and abnormal neuron densities were positively correlated in the globus pallidus but negatively correlated in the hippocampus. The NI and GCI were only positively correlated in the pons. GCI in the pons and inferior olivary nucleus, NI in the substantia nigra, and abnormal neurons in the frontal cortex varied significantly between cases. The MSA cases did not cluster according to disease subtype. The data suggest that: 1) the greatest densities of pathological changes occur in the substantia nigra and globus pallidus, 2) density of the GCI is unrelated to that of the NI, and 3) there is overlapping pathology between the various subtypes of MSA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In cases of multiple system atrophy (MSA), glial cytoplasmic inclusions (GCI) were distributed randomly or present in large diffuse clusters (>1,600 μm in diameter) in most areas studied. These spatial patterns contrast with those reported for filamentous neuronal inclusions in the tauopathies and α-synucleinopathies. © 2003 Movement Disorder Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanism by which the adipokine zinc-a2-glycoprotein (ZAG) increases the mass of gastrocnemius, but not soleus muscle of diabetic mice, has been evaluated both in vivo and in vitro. There was an increased phosphorylation of both double-stranded RNA-dependent protein kinase and its substrate, eukaryotic initiation factor-2a, which was attenuated by about two-thirds in gastrocnemius but not soleus muscle of ob/ob mice treated with ZAG (50 µg, iv daily) for 5 d. ZAG also reduced the expression of the phospho forms of p38MAPK and phospholipase A2, as well as expression of the ubiquitin ligases (E3) muscle atrophy F-box/atrogin-1 and muscle RING finger protein, and the increased activity of both caspase-3 and casapse-8 to values found in nonobese controls. ZAG also increased the levels of phospho serine-threonine kinase and mammalian target of rapamycin in gastrocnemius muscle and reduced the phosphorylation of insulin receptor substrate-1 (Ser307) associated with insulin resistance. Similar changes were seen with ZAG when murine myotubes were incubated with high glucose concentrations (10 and 25 mm), showing that the effect of ZAG was direct. ZAG produced an increase in cAMP in murine myotubes, and the effects of ZAG on protein synthesis and degradation in vitro could be replicated by dibutyryl cAMP. ZAG increased cAMP levels of gastrocnemius but not soleus muscle. These results suggest that protein accretion in skeletal muscle in response to ZAG may be due to changes in intracellular cAMP and also that ZAG may have a therapeutic application in the treatment of muscle wasting conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies suggest that the activation (autophosphorylation) of dsRNA-dependent protein kinase (PKR) can stimulate protein degradation, and depress protein synthesis in skeletal muscle through phosphorylation of the translation initiation factor 2 (eIF2) on the alpha-subunit. To understand whether these mediators are important in muscle wasting in cancer patients, levels of the phospho forms of PKR and eIF2alpha have been determined in rectus abdominus muscle of weight losing patients with oesophago-gastric cancer, in comparison with healthy controls. Levels of both phospho PKR and phospho eIF2alpha were significantly enhanced in muscle of cancer patients with weight loss irrespective of the amount and there was a linear relationship between phosphorylation of PKR and phosphorylation of eIF2alpha (correlation coefficient 0.76, P=0.005). This suggests that phosphorylation of PKR led to phosphorylation of eIF2alpha. Myosin levels decreased as the weight loss increased, and there was a linear relationship between myosin expression and the extent of phosphorylation of eIF2alpha (correlation coefficient 0.77, P=0.004). These results suggest that phosphorylation of PKR may be an important initiator of muscle wasting in cancer patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Both proteolysis-inducing factor (PIF) and angiotensin II have been shown to produce a depression in protein synthesis in murine myotubes concomitant with an increased phosphorylation of eukaryotic initiation factor 2 (eIF2α). Both PIF and angiotensin II were shown to induce autophosphorylation of the RNA-dependent protein kinase (PKR), and an inhibitor of this enzyme completely attenuated the depression in protein synthesis and prevented the induction of eIF2α phosphorylation. The PKR inhibitor also completely attenuated the increase in protein degradation induced by PIF and angiotensin II and prevented the increase in proteasome expression and activity. To confirm these results myotubes were transfected with plasmids that express either wild-type PKR, or a catalytically inactive PKR variant, PKRΔ6. Myotubes expressing PKRΔ6 showed no increase in eIF2α phosphorylation in response to PIF or angiotensin II, no depression in protein synthesis, and no increase in protein degradation or increase in proteasome expression. Induction of the ubiquitin-proteasome pathway by PIF and angiotensin II has been linked to activation of the transcription factor nuclear factor-κB (NF-κB). Inhibition of PKR prevented nuclear migration of NF-κB in response to both PIF and angiotensin II, by preventing degradation of the inhibitor protein I-κB. Phosphorylation of PKR and eIF2α was also significantly increased in the gastrocnemius muscle of weight losing mice bearing the MAC16 tumor, suggesting that a similar process may be operative in cancer cachexia. These results provide a link between the depression of protein synthesis in skeletal muscle and the increase in protein degradation. © 2007 by The American Society for Biochemistry and Molecular Biology, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To determine the effectiveness of the polyanionic, metal binding agent D-myo-inositol-1,2,6-triphosphate (alpha trinositol, AT), and its hexanoyl ester (HAT), in tissue wasting in cancer cachexia. METHODS: The anti-cachexic effect was evaluated in the MAC16 tumour model. RESULTS: Both AT and HAT attenuated the loss of body weight through an increase in the nonfat carcass mass due to an increase in protein synthesis and a decrease in protein degradation in skeletal muscle. The decrease in protein degradation was associated with a decrease in activity of the ubiquitin-proteasome proteolytic pathway and caspase-3 and -8. Protein synthesis was increased due to attenuation of the elevated autophosphorylation of double-stranded RNA-dependent protein kinase, and of eukaryotic initiation factor 2alpha together with hyperphosphorylation of eIF4E-binding protein 1 and decreased phosphorylation of eukaryotic elongation factor 2. In vitro, AT completely attenuated the protein degradation in murine myotubes induced by both proteolysis-inducing factor and angiotensin II. CONCLUSION: These results show that AT is a novel therapeutic agent with the potential to alleviate muscle wasting in cancer patients.