1000 resultados para 18S DNA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aberrant DNA replication is a primary cause of mutations that are associated with pathological disorders including cancer. During DNA metabolism, the primary causes of replication fork stalling include secondary DNA structures, highly transcribed regions and damaged DNA. The restart of stalled replication forks is critical for the timely progression of the cell cycle and ultimately for the maintenance of genomic stability. Our previous work has implicated the single-stranded DNA binding protein, hSSB1/NABP2, in the repair of DNA double-strand breaks via homologous recombination. Here, we demonstrate that hSSB1 relocates to hydroxyurea (HU)-damaged replication forks where it is required for ATR and Chk1 activation and recruitment of Mre11 and Rad51. Consequently, hSSB1-depleted cells fail to repair and restart stalled replication forks. hSSB1 deficiency causes accumulation of DNA strand breaks and results in chromosome aberrations observed in mitosis, ultimately resulting in hSSB1 being required for survival to HU and camptothecin. Overall, our findings demonstrate the importance of hSSB1 in maintaining and repairing DNA replication forks and for overall genomic stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The repair of DNA double-strand breaks (DSBs) is a critical cellular mechanism that exists to ensure genomic stability. DNA DSBs are the most deleterious type of insult to a cell’s genetic material and can lead to genomic instability, apoptosis, or senescence. Incorrectly repaired DNA DSBs have the potential to produce chromosomal translocations and genomic instability, potentially leading to cancer. The prevalence of DNA DSBs in cancer due to unregulated growth and errors in repair opens up a potential therapeutic window in the treatment of cancers. The cellular response to DNA DSBs is comprised of two pathways to ensure DNA breaks are repaired: homologous recombination and non-homologous end joining. Identifying chemotherapeutic compounds targeting proteins involved in these DNA repair pathways has shown promise as a cancer therapy for patients, either as a monotherapy or in combination with genotoxic drugs. From the beginning, there have been a number of chemotherapeutic compounds that have yielded successful responses in the clinic, a number that have failed (CGK-733 and iniparib), and a number of promising targets for future studies identified. This review looks in detail at how the cell responds to these DNA DSBs and investigates the chemotherapeutic avenues that have been and are currently being explored to target this repair process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Senataxin, mutated in the human genetic disorder ataxia with oculomotor apraxia type 2 (AOA2), plays an important role in maintaining genome integrity by coordination of transcription, DNA replication, and the DNA damage response. We demonstrate that senataxin is essential for spermatogenesis and that it functions at two stages in meiosis during crossing-over in homologous recombination and in meiotic sex chromosome inactivation (MSCI). Disruption of the Setx gene caused persistence of DNA double-strand breaks, a defect in disassembly of Rad51 filaments, accumulation of DNA:RNA hybrids (R-loops), and ultimately a failure of crossing-over. Senataxin localised to the XY body in a Brca1-dependent manner, and in its absence there was incomplete localisation of DNA damage response proteins to the XY chromosomes and ATR was retained on the axial elements of these chromosomes, failing to diffuse out into chromatin. Furthermore persistence of RNA polymerase II activity, altered ubH2A distribution, and abnormal XY-linked gene expression in Setx⁻/⁻ revealed an essential role for senataxin in MSCI. These data support key roles for senataxin in coordinating meiotic crossing-over with transcription and in gene silencing to protect the integrity of the genome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phylogenetic relationships of the beetle superfamily Tenebrionoidea are investigated using the most comprehensive genetic data set compiled to date. With ∼34,000 described species in approximately 1250 genera and 28 families, Tenebrionoidea represent one of the most diverse and species-rich superfamilies of beetles. The interfamilial relationships of the Tenebrionoidea are poorly known; previous morphological and molecular phylogenies recovered few well-supported and often conflicting relationships between families. Here we present a molecular phylogeny of Tenebrionoidea based on genes commonly used to resolve family and superfamily-level phylogenies of beetles (18S, 28S, 16S, 12S, tRNA Val and COI). The alignment spanned over 6.5 KB of DNA sequence and over 300 tenebrionoid genera from 24 of the 28 families were sampled. Maximum Likelihood and Bayesian analysis could not resolve deeper level divergences within the superfamily and very few relationships between families were supported. Increasing gene coverage in the alignment by removing taxa with missing data did not improve clade support but when rogue taxa were removed increased resolution was recovered. Investigation of signal strength suggested conflicting phylogenetic signal was present in the standard genes used for beetle phylogenetics, even when rogue taxa were removed. Our study of Tenebrionoidea highlights that even with relatively comprehensive taxon sampling within a lineage, this standard set of genes is unable to resolve relationships within this superfamily.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The association between an adverse early life environment and increased susceptibility to later-life metabolic disorders such as obesity, type 2 diabetes and cardiovascular disease is described by the developmental origins of health and disease hypothesis. Employing a rat model of maternal high fat (MHF) nutrition, we recently reported that offspring born to MHF mothers are small at birth and develop a postnatal phenotype that closely resembles that of the human metabolic syndrome. Livers of offspring born to MHF mothers also display a fatty phenotype reflecting hepatic steatosis and characteristics of non-alcoholic fatty liver disease. In the present study we hypothesised that a MHF diet leads to altered regulation of liver development in offspring; a derangement that may be detectable during early postnatal life. Livers were collected at postnatal days 2 (P2) and 27 (P27) from male offspring of control and MHF mothers (n = 8 per group). Cell cycle dynamics, measured by flow cytometry, revealed significant G0/G1 arrest in the livers of P2 offspring born to MHF mothers, associated with an increased expression of the hepatic cell cycle inhibitor Cdkn1a. In P2 livers, Cdkn1a was hypomethylated at specific CpG dinucleotides and first exon in offspring of MHF mothers and was shown to correlate with a demonstrable increase in mRNA expression levels. These modifications at P2 preceded observable reductions in liver weight and liver:brain weight ratio at P27, but there were no persistent changes in cell cycle dynamics or DNA methylation in MHF offspring at this time. Since Cdkn1a up-regulation has been associated with hepatocyte growth in pathologic states, our data may be suggestive of early hepatic dysfunction in neonates born to high fat fed mothers. It is likely that these offspring are predisposed to long-term hepatic dysfunction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epigenetic silencing mediated by CpG methylation is a common feature of many cancers. Characterizing aberrant DNA methylation changes associated with tumor progression may identify potential prognostic markers for prostate cancer (PCa). We treated two PCa cell lines, 22Rv1 and DU-145 with the demethylating agent 5-Aza 2’–deoxycitidine (DAC) and global methylation status was analyzed by performing methylation-sensitive restriction enzyme based differential methylation hybridization strategy followed by genome-wide CpG methylation array profiling. In addition, we examined gene expression changes using a custom microarray. Gene Set Enrichment Analysis (GSEA) identified the most significantly dysregulated pathways. In addition, we assessed methylation status of candidate genes that showed reduced CpG methylation and increased gene expression after DAC treatment, in Gleason score (GS) 8 vs. GS6 patients using three independent cohorts of patients; the publically available The Cancer Genome Atlas (TCGA) dataset, and two separate patient cohorts. Our analysis, by integrating methylation and gene expression in PCa cell lines, combined with patient tumor data, identified novel potential biomarkers for PCa patients. These markers may help elucidate the pathogenesis of PCa and represent potential prognostic markers for PCa patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thraustochytrids have become of considerable industrial and scientific interest in the past decade due to their health benefits. They have been proven to be the principle source in marine and estuarine fish diets with high percentage of long chain (LC) or polyunsaturated fatty acids (PUFA). Therefore, the oil extracted from fish for human document.forms[0].elements[13].select();consumption is rich in PUFA with high omega-3 fatty acid content. Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) of all of the omega-3 fatty acids, are considered beneficial essential oils for humans with a wide range of health benefits. These include brain and neural development in infants, general wellbeing of adults and drug delivery through precursor molecules. They have become one of the most extensively studied organisms for industrial oil preparations as PUFA extraction from fish becomes less profitable. Many forms of these Thraustochytrid oils are being trialled for human consumption all over the world. In Australia, there has been little research performed on these organisms in the past ten years. A few Australian studies have been conducted in the form of comparative studies related to PUFA production within the related genera, but not focussed on their identification or cellular and genomic characterisation. Therefore, the main aim of this study was to investigate the morphological and genetic characteristics of Australian Thraustochytrids in order to aid in their identification and characterisation, as well as to better understand the effect of environmental conditions in the regulation of PUFA production. It was also noted that there was a knowledge gap in the preservation and total genomic DNA extraction of these organisms for the purposes of scientific research. The cryopreservation of these organisms for studies around the world follows existing generic methods. However, it is well understood that many of these generic methods attract not only high costs for chemicals, but also uses considerable storage space and other resources, all of which can be improved with new or modified approaches. In this context, a simple and inexpensive bead preservation method is described, without compromising the storage shelf life. We also describe, for the first time, the effects of culture age on the successful cryopreservation of Thraustochytrids. It was evident in the literature that DNA and RNA extractions for molecular and genetic studies of Thraustochytrids follow the classical phenol-chloroform extraction methods. It was also observed that modern protocols failed to avoid the use of phenol-chloroform rather than improving preparation and cell disruption. In order to provide a high quantity and quality DNA extraction, a modified protocol has been introduced that employs the use of modern commercial extraction kits and standard laboratory equipment. Thraustochytrids have been shown to be highly conserved in their 18S rDNA gene sequences, which is used as the current standard for identification. It was demonstrated that the 18S rDNA gene sequence limits the recognition of closely related genera or within the genera from each member. Therefore, it was proposed that another profile, such as a randomly amplified polymorphic DNA (RAPD) based profiling system, be tested for use in the characterisation of Thraustochytrids. The RAPD profiles were shown to provide a unique DNA fingerprint for each isolate and small variations in their genome were able to be detected. This method involved the use of a minimum number of standard arbitrary primers and with an increase in the number of different primers used, a very high discrimination between organisms could be achieved. However, the method was not suitable for taxonomic purposes because the results did not correlate with other taxonomic features such as morphology. Another knowledge gap was found with respect to Australian Thraustochytrid growth characteristics, in that these had not been recorded and published. In order to rectify this, a record of colony and microscopic features of 12 selected isolates was performed. The results of preliminary studies indicated that further microbiological and biochemical studies are needed for full characterisation of these organisms. This information is of great importance to bio-prospecting of new Thraustochytrids from Australian ecosystems and would allow for their accurate identification, and so permit the prediction of their PUFA capability by comparison with related genera/species. It was well recognized that environmental stress plays a role in the PUFA production and is mainly due to the reactive oxygen species as abiotic stress (Chiou et al., 2001; Okuyama et al., 2008; Shabala et al., 2009; Shabala et al., 2001). In this aspect, this study makes the first attempt towards better understanding of this phenomenon by way of the use of real-time PCR for the detection of environmental effects on the regulation of PUFA production. Three main environmental conditions including temperature, pH and oxygen availability were monitored as stress inducers. In summary, this study provides novel approaches for the preservation and handling of Thraustochytrids, their molecular biological features, taxonomy, characterisation and responses to environmental factors with respect to their oil production enzymes. The information produced from this study will prove to be vital for both industrial and scientific investigations in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new strategy for rapidly selecting and testing genetic vaccines has been developed, in which a whole genome library is cloned into a bacteriophage λ ZAP Express vector which contains both prokaryotic (Plac) and eukaryotic (PCMV) promoters upstream of the insertion site. The phage library is plated on Escherichia coli cells, immunoblotted, and probed with hyperimmune and/or convalescent-phase antiserum to rapidly identify vaccine candidates. These are then plaque purified and grown as liquid lysates, and whole bacteriophage particles are then used directly to immunize the host, following which PCMV-driven expression of the candidate vaccine gene occurs. In the example given here, a semirandom genome library of the bovine pathogen Mycoplasma mycoides subsp. mycoides small colony (SC) biotype was cloned into λ ZAP Express, and two strongly immunodominant clones, λ-A8 and λ-B1, were identified and subsequently tested for vaccine potential against M. mycoides subsp. mycoides SC biotype-induced mycoplasmemia. Sequencing and immunoblotting indicated that clone λ-A8 expressed an isopropyl-β-d-thiogalactopyranoside (IPTG)-inducible M. mycoides subsp. mycoides SC biotype protein with a 28-kDa apparent molecular mass, identified as a previously uncharacterized putative lipoprotein (MSC_0397). Clone λ-B1 contained several full-length genes from the M. mycoides subsp. mycoides SC biotype pyruvate dehydrogenase region, and two IPTG-independent polypeptides, of 29 kDa and 57 kDa, were identified on immunoblots. Following vaccination, significant anti-M. mycoides subsp. mycoides SC biotype responses were observed in mice vaccinated with clones λ-A8 and λ-B1. A significant stimulation index was observed following incubation of splenocytes from mice vaccinated with clone λ-A8 with whole live M. mycoides subsp. mycoides SC biotype cells, indicating cellular proliferation. After challenge, mice vaccinated with clone λ-A8 also exhibited a reduced level of mycoplasmemia compared to controls, suggesting that the MSC_0397 lipoprotein has a protective effect in the mouse model when delivered as a bacteriophage DNA vaccine. Bacteriophage-mediated immunoscreening using an appropriate vector system offers a rapid and simple technique for the identification and immediate testing of putative candidate vaccines from a variety of pathogens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aflatoxin B1, a potently carcinogenic fungal metabolite, is converted to the biologically active form by chemical oxidation using dimethyldioxirane and enzymatically by cytochrome P450 mixed-function oxidases. Both processes give rise to mixtures of the exo- and endo-8,9-epoxides. Methanolysis studies reveal exclusive trans opening of both epoxides under neutral conditions in CH3OH and CH3OH/H2O mixtures; an SN2 mechanism is postulated. Under acidic conditions, the exo isomer gives mixtures of trans and cis solvolysis products, suggesting that the reaction is, at least in part, SN1; the endo isomer gives only the trans product. The exo isomer reacts with DNA by attack of the nitrogen atom at the 7 position of guanine on C8 of the epoxide to give the trans adduct; the endo epoxide fails to form an adduct at this or any other site in DNA. The exo isomer is strongly mutagenic in a base-pair reversion assay employing Salmonella typhimurium; the endo isomer is essentially nonmutagenic. Aflatoxin B1 and its derivatives intercalate in DNA. These results are consistent with a mechanism in which intercalation of the exo epoxide optimally orients the epoxide for an SN2 reaction with guanine but intercalation of the endo isomer places the epoxide in an orientation which precludes reaction. Thus, while the exo epoxide is a potent mutagen, the endo epoxide fails to react with DNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reactive oxygen species are generated during ischaemia-reperfusion of tissue. Oxidation of thymidine by hydroxyl radicals (HO) leads to the formation of 5,6-dihydroxy-5,6-dihydrothymidine (thymidine glycol). Thymidine glycol is excreted in urine and can be used as biomarker of oxidative DNA damage. Time dependent changes in urinary excretion rates of thymidine glycol were determined in six patients after kidney transplantation and in six healthy controls. A new analytical method was developed involving affinity chromatography and subsequent reverse-phase high-performance liquid chromatography (RP-HPLC) with a post-column chemical reaction detector and endpoint fluorescence detection. The detection limit of this fluorimetric assay was 1.6 ng thymidine glycol per ml urine, which corresponds to about half of the physiological excretion level in healthy control persons. After kidney transplantation the urinary excretion rate of thymidine glycol increased gradually reaching a maximum around 48 h. The excretion rate remained elevated until the end of the observation period of 10 days. Severe proteinuria with an excretion rate of up to 7.2 g of total protein per mmol creatinine was also observed immediately after transplantation and declined within the first 24 h of allograft function (0.35 + 0.26 g/mmol creatinine). The protein excretion pattern, based on separation of urinary proteins on sodium dodecyl sulphate-polyacrylamide gel electrophorosis (SDS-PAGE), as well as excretion of individual biomarker proteins, indicated nonselective glomerular and tubular damage. The increased excretion of thymidine glycol after kidney transplantation may be explained by ischaemia-reperfusion induced oxidative DNA damage of the transplanted kidney.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Following isophorone exposure, in a 2-year study with F344 rats and B6C3F1 mice performed under the National Toxicology Program (NTP), an elevated incidence of tumors was observed in male rats (kidney tumors) and male mice (liver tumors). Female rats and mice showed no elevation of tumor rates by isophorone (NTP 1986).