1000 resultados para 12-116A
Resumo:
Cyclization of compound 5c in trifluoroacetic acid/hexamethylenetetramine produces Tröger's base analogue 6c in 75% yield with 70% diastereoselectivity.
Resumo:
Three-dimensional structures of the complexes of concanavalin A (ConA) with alpha(1-2) linked mannobiose, triose and tetraose have been generated with the X-ray crystal structure data on native ConA using the CCEM (contact criteria and energy minimization) method. All the constituting mannose residues of the oligosaccharide can reach the primary binding site of ConA (where methyl-alpha-D-mannopyranose binds). However, in all the energetically favoured complexes, either the non-reducing end or middle mannose residues of the oligosaccharide occupy the primary binding site. The middle mannose residues have marginally higher preference over the non-reducing end residue. The sugar binding site of ConA is extended and accommodates at least three alpha(1-2) linked mannose residues. Based on the present calculations two mechanisms have been proposed for the binding of alpha(1-2) linked mannotriose and tetraose to ConA.
Resumo:
High pressure Raman scattering studies have been carried out on cesium periodate (CsIO4) using the diamond anvil cell. Three pressure-induced phase transitions occur in the range 0.1�12 GPa as indicated by abrupt changes in the Raman spectra, and pressure dependence of the phonon frequencies. The transitions are observed at 1.5, 4.5 and 6.2 GPa in the increasing pressure cycle. A large hysteresis is noticed for the reverse transition when releasing the pressure. The high pressure phase is nearly quenchable to ambient pressure. The nature of the pressure-induced transitions are discussed in terms of the sequence of pressure-induced transitions expected for scheelite-pseudoscheelite structure ABO4 compounds from crystal chemical considerations. For the softening of the two high frequency internal modes, a pressure-induced electronic change involving the 5 d states of cesium and 5 p states of iodine is invoked.
Role of Li+ ions in corrosion behaviour of 8090 Al-Li alloy and aluminium in pH 12 aqueous solutions
Resumo:
The influence of Li+ ions on the corrosion behaviour of the Al-Li alloy 8090-T851 and of commercially pure aluminium in aqueous solutions at pH 12 was studied by weight loss and electrochemical polarisation methods. The inhibiting role of Li+ was concentration dependent, corrosion rate decreasing lineally with log[Li+] in the concentration range 10(-4)-10(-1) mol L(-1). A change from general to pitting corrosion was evident from scanning election microscopy studies. Polarisation studies revealed that Li+ primarily acts as an anodic inhibitor (passivator). Passive film formation and stability also become more feasible with increasing Li+ concentration. Fitting potential was dependent on the Cl- ion concentration in the solution. Both materials were affected similarly by the presence of Li+ ions, the corrosion rate of the alloy being slightly lower. This is attributed to the lithium in the alloy acting as a source of lithium for passive film formation. (C) 1995 The Institute of Materials.
Resumo:
Details of the first total syntheses of the sesquiterpenes myltayl-8(12)-ene and 6-epijunicedran-8-ol are described. The aldehyde 13, obtained by Claisen rearrangement of cyclogeraniol, was transformed into the dienones 12 and 18. Boron trifluoride-diethyl ether mediated cyclization and rearrangement transformed the dienones 12 and 18 into the tricyclic ketones 16 and 17, efficiently creating three and four contiguous quaternary carbon atoms, respectively. Wittig methylenation of 16 furnished (+/-)-myltayl-8(12)-ene (11), whereas reduction of the ketone 17 furnished (+/-)-6-epijunicedranol (23).
Resumo:
Layered organic inorganic hybrids based on perovskite-derived alkylammonium lead halides have been demonstrated as important new materials in the construction of molecular electronic devices. Typical of this class of materials are the single-perovskite slab lead iodides of the general formula (CnH2n+1NH3)(2)PbI4. While for small n, these compounds are amenable to single-crystal structure determination, the increasing degree of disorder in the long chain (n = 12,14...) compounds makes such an analysis difficult. In this study, we use powder X-ray diffraction, and vibrational and C-13 NMR spectroscopies to establish the conformation, orientation and organization of hydrocarbon chains in the series of layered alkylammonium lead iodides (CnH2n+1NH3)(2)PbI4 (n = 12,16,18). We find that the alkyl chains adopt a tilted bilayer arrangement, while the structure of the inorganic layer remains invariant with respect to the value of n. Conformation-sensitive methylene stretching modes in the infrared and Raman spectra, as well as the C-13 NMR spectra indicate that bonds in the methylene chain are in trans configuration. The skeletal modes of the alkyl chain in the Raman spectra establish that there is a high degree of all-trans conformational registry for the values of n studied here. From the orientation dependence of the infrared spectra of crystals of (CnH2n+1NH3)(2)PbI4 ( n = 12,16), we find that the molecular axis of the all-trans alkyl chains are tilted away from the interlayer normal by an angle of 55degrees. This value of this tilt angle is consistent with the dependence of the c lattice expansion as a function of n, as determined from powder X-ray diffraction.
Resumo:
Using an efficient numerical scheme that exploits spatial symmetries and spin parity, we have obtained the exact low-lying eigenstates of exchange Hamiltonians for ferric wheels up to Fe-12. The largest calculation involves the Fe-12 ring which spans a Hilbert space dimension of about 145x10(6) for the M-S=0 subspace. Our calculated gaps from the singlet ground state to the excited triplet state agree well with the experimentally measured values. Study of the static structure factor shows that the ground state is spontaneously dimerized for ferric wheels. The spin states of ferric wheels can be viewed as quantized states of a rigid rotor with the gap between the ground and first excited states defining the inverse of the moment of inertia. We have studied the quantum dynamics of Fe-10 as a representative of ferric wheels. We use the low-lying states of Fe-10 to solve exactly the time-dependent Schrodinger equation and find the magnetization of the molecule in the presence of an alternating magnetic field at zero temperature. We observe a nontrivial oscillation of the magnetization which is dependent on the amplitude of the ac field. We have also studied the torque response of Fe-12 as a function of a magnetic field, which clearly shows spin-state crossover.
Resumo:
A new topology of asymmetric cascaded H-Bridge inverter is presented in this paper It consists of two cascaded H-bridge cells per phase. They are fed from isolated dc sources having a dc bus ratio of 1:0.366. Out of many space vectors possible from this circuit, only those are chosen that lie on 12-sided polygons. Thus, the overall space vector diagram produced by this circuit consists of multiple numbers of 12-sided polygons. With a proper PWM timing calculations based on these selected space vectors, it is possible to eliminate all the 6n +/- 1, (n = odd) harmonics from the phase voltage under all operating conditions. The switching frequency of individual H-Bridge cells is also substantially low. Extensive experimental results have been presented in this paper to validate the proposed concept.
Resumo:
The single perovskite slab alkylammonium lead iodides (CnH2n+1NH3)(2)PbI4, n = 12, 16, 18, display two phase transitions, just above room temperature, associated with changes in the alkylammonium chains. We have followed these two phase transitions using scanning calorimetry, X-ray powder diffraction, and IR and Raman spectroscopies. We find the first phase transition to be associated with symmetry changes arising from a dynamic rotational disordering of the ammonium headgroup of the chain whereas the second transition, the melting of the chains in two dimensions, is characterized by an increased conformational disorder of the methylene units of the alkyl chains. We examine these phase transitions in light of the interesting optical properties of these materials, as well as the relevance of these systems as models for phase transitions in lipid bilayers.
Resumo:
The title compound, C(14)H(17)FO(2), was obtained from anti-4a, 9a:8a,10a-diepoxy-1,4,4a,5,8,8a, 9,9a, 10,10a-decahydroanthracene via tandem hydrogen-fluoride-mediated epoxide ring-opening and transannular oxacyclization. With the two cyclohexene rings folded towards the oxygen bridge, the title tetracyclic fluoroalcohol molecule displays a conformation reminiscent of a pagoda. The crystal packing is effected via intermolecular O-H center dot center dot center dot O hydrogen bonds, which link the molecules into a zigzag chain along the b axis.
Resumo:
Enantiospecific syntheses of 1-epi- (or cis-)-preisothapsa-2,8(12)-diene and 1-epi- and 1,8-diepipreisothapsa-2-en-12-ols, starting from the readily available monoterpene (R)-carvone, have been accomplished.
Resumo:
A torque control scheme, based on a direct torque control (DTC) algorithm using a 12-sided polygonal voltage space vector, is proposed for a variable speed control of an open-end induction motor drive. The conventional DTC scheme uses a stator flux vector for the sector identification and then the switching vector to control stator flux and torque. However, the proposed DTC scheme selects switching vectors based on the sector information of the estimated fundamental stator voltage vector and its relative position with respect to the stator flux vector. The fundamental stator voltage estimation is based on the steady-state model of IM and the synchronous frequency of operation is derived from the computed stator flux using a low-pass filter technique. The proposed DTC scheme utilizes the exact positions of the fundamental stator voltage vector and stator flux vector to select the optimal switching vector for fast control of torque with small variation of stator flux within the hysteresis band. The present DTC scheme allows full load torque control with fast transient response to very low speeds of operation, with reduced switching frequency variation. Extensive experimental results are presented to show the fast torque control for speed of operation from zero to rated.
Resumo:
A 12 V Substrate-Integrated PbO2-Activated Carbon hybrid ultracapacitor (SI-PbO2-AC HUCs) with silica-gel sulfuric acid electrolyte is developed and performance tested. The performance of the silica-gel based hybrid ultracapacitor is compared with flooded and AGM-based HUCs. These HUCs comprise substrate-integrated PbO2 (SI-PbO2) as positive electrodes and high surface-area activated carbon with dense graphite-sheet substrate as negative electrodes. 12 V SI-PbO2-AC HUCs with flooded, AGM and gel electrolytes are found to have capacitance values of 308 F, 184 F, and 269 F at C-rate and can be pulse charged and discharged for 100,000 cycles with only a nominal decrease in their capacitance values. The best performance is exhibited by gel-electrolyte HUCs.